Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Publication year range
1.
Microb Pathog ; 191: 106648, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641070

ABSTRACT

This study investigates the multifunctional bioactivities of pepsin-hydrolyzed jellyfish by-products (Rhopilema hispidum and Lobonema smithii), focusing on their anti-α-glucosidase activity, anti-inflammatory effects, anti-bacterial properties, and ability to inhibit biofilm formation of Staphylococcus aureus. Our findings revealed that jellyfish protein hydrolysates, particularly from Rhopilema hispidum, exhibit significant anti-α-glucosidase activity, surpassing the well-known α-glucosidase inhibitor Acarbose. Furthermore, we demonstrated the anti-inflammatory capabilities of these hydrolysates in suppressing lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophage cells. This effect was dose-dependent and non-cytotoxic, highlighting the hydrolysate potential in treating inflammation-related conditions. Regarding anti-bacterial activity, pepsin-hydrolyzed jellyfish selectively exhibited a potent effect against S. aureus, including Methicillin-susceptible and Methicillin-resistant strains. This activity was evident at minimum inhibitory concentrations (MIC) of 25 µg/mL for S. aureus ATCC10832, while a modest effect was observed against other Gram-positive strains. The hydrolysates effectively delayed bacterial growth dose-dependently, suggesting their use as alternative agents against bacterial infections. Most notably, pepsin-hydrolyzed jellyfish showed significant anti-biofilm activity against S. aureus. The umbrella section hydrolysate of Rhopilema hispidum was particularly effective, reducing biofilm formation through downregulating the icaA gene, crucial for biofilm development. Furthermore, the hydrolysates modulated the expression of the agrA gene, a key regulator in the pathogenesis of S. aureus. In conclusion, pepsin-hydrolyzed jellyfish protein hydrolysates exhibit promising multifunctional bioactivities, including anti-diabetic, anti-inflammatory, antibacterial, and anti-biofilm properties. These findings suggest their potential application in pharmaceutical and nutraceutical fields, particularly in managing diabetic risks, inflammation, bacterial infections, and combating the biofilm-associated pathogenicity of S. aureus.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Biofilms , Microbial Sensitivity Tests , Protein Hydrolysates , Scyphozoa , Staphylococcus aureus , Animals , Mice , Biofilms/drug effects , Staphylococcus aureus/drug effects , Scyphozoa/microbiology , Anti-Bacterial Agents/pharmacology , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Inflammation/drug therapy , Macrophages/drug effects , Nitric Oxide/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Diabetes Mellitus , Pepsin A/metabolism , Lipopolysaccharides
2.
J Food Sci Technol ; 61(11): 2177-2184, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39397847

ABSTRACT

Gamma oryzanol (GO) is the rice bioactive compound which presents various therapeutic effects. However, GO is relatively unstable to environmental factors during processing and storage. The objective of this work was to produce GO microparticles encapsulated with inulin and Tween80 (GOINs) by spray-drying. Response surface analysis was used for the optimization of the encapsulation to get maximum % encapsulation efficiency (%EE) of GO. Three process variables for the concentration of 10-20% inulin (w/v), 3-5% Tween 80 (w/v), and 3-5% GO (w/v) were investigated. Quadratic polynomial regression model for the optimization with R2 at 0.92 was obtained from the study The optimum condition was 20% inulin (w/v), 3% Tween 80 (w/v), and 3% GO (w/v) which yielded a high % EE of 82.63% and particles size at 1,154.60 ± 28.85 nm Fourier transform infrared spectroscopy demonstrated that GO was encapsulated inside the inulin matrix. Our study provided potential and improved hygroscopicity ranged from 6.51 to 10.22 g H2O/100 g dry weight of GO in spray-dried microcapsules. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05988-0.

3.
J Food Sci Technol ; 55(10): 3979-3990, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30228396

ABSTRACT

Changes in physico-chemical qualities (pH, total acidity, total and reducing sugar, total phenolic and vitamin C), astringency compounds (condensed and hydrolysable tannin), antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical] and flavor volatile compounds in Lactobacillus plantarum-fermented cashew-apple-juice (CAJ) and 11.4 °Bx concentrated-cashew-apple-juice (CCAJ) was investigated. Total phenolics remained unchanged throughout fermentation period, whereas condensed tannins increased and hydrolysable tannins decreased indicating reduced astringency compounds. Antioxidant activity based on both DPPH and ABTS radical scavenging activities marginally declined in some stages but overall were sustained during fermentation. Although the DPPH· radical based antioxidant activity of fermented CAJ was greater than that of fermented 11.4 °Bx CCAJ, a higher ABTS·+ radical scavenging activity was found in fermented 11.4 °Bx CCAJ, reflecting higher water soluble antioxidants. Results also indicated that DPPH· radical scavenging activity was positively correlated to vitamin-C and condensed tannins but not hydrolysable tannins. ABTS·+ radical scavenging activity was also positively correlated to condensed tannins and not hydrolysable tannins. The vitamin-C that increased during initial 12 h fermentation, decreased from 2516 to 2150 mg AAE/L at the end of 72 h fermentation. Fermented CAJ had a remarkable sweet aroma with a fruity note of two major compounds; 3-methyl-1-butanol (14.20 × 107) and 2,6-dimethyl-4-heptanol (14.76 × 107). The high phytochemicals and volatile compounds in fermented CAJ indicated that it could serve as a functional beverage with potential health benefits with reduced astringency due to lower hydrolysable tannins.

4.
Gels ; 10(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667690

ABSTRACT

Due to its excellent biocompatibility and ease of biodegradation, jellyfish gelatin has gained attention as a hydrogel. However, hydrogel produced from jellyfish gelatin has not yet been sufficiently characterized. Therefore, this research aims to produce a jellyfish gelatin-based hydrogel. The gelatin produced from desalted jellyfish by-products varied with the part of the specimen and extraction time. Hydrogels with gelatin: glutaraldehyde ratios of 10:0.25, 10:0.50, and 10:1.00 (v/v) were characterized, and their cefazolin release ability was determined. The optimal conditions for gelatin extraction and chosen for the development of jellyfish hydrogels (JGel) included the use of the umbrella part of desalted jellyfish by-products extracted for 24 h (WU24), which yielded the highest gel strength (460.02 g), viscosity (24.45 cP), gelling temperature (12.70 °C), and melting temperature (22.48 °C). The quantities of collagen alpha-1(XXVIII) chain A, collagen alpha-1(XXI) chain, and collagen alpha-2(IX) chain in WU24 may influence its gel properties. Increasing the glutaraldehyde content in JGel increased the gel fraction by decreasing the space between the protein chains and gel swelling, as glutaraldehyde binds with lateral amino acid residues and produces a stronger network. At 8 h, more than 80% of the cefazolin in JGel (10:0.25) was released, which was higher than that released from bovine hydrogel (52.81%) and fish hydrogel (54.04%). This research is the first report focused on the production of JGel using glutaraldehyde as a cross-linking agent.

5.
PLoS One ; 18(2): e0269857, 2023.
Article in English | MEDLINE | ID: mdl-36735671

ABSTRACT

This study aimed to produce process flavorings from methionine and glucose via Maillard reaction by extrusion method. Modified starch was used as a carrier to reduce the torque and facilitate the production process. Five formulations of process flavorings with different ratios of methionine: dextrose: modified starch: water as MS5 (72:18:5:5), MS15 (64:16:15:5), MS25 (56:14:25:5), MS35 (42:12:35:5), and MS45 (40:10:45:5) were prepared and feded into the extruder. The temperatures of the extruder barrel in zones 1 and 2 were controlled at 100, and 120°C, with a screw speed of 30 rpm. The appearance of the obtained products, torque, pH before and after extrusion, color, volatile compounds, and sensory evaluation were determined. The extrudate from the formulation containing the highest amount of modified starch (MS45) gave the highest L* (lightness) of 88.00, which increased to 93.00 (very light) after grinding into a powder. The process flavorings from all formulations exhibited similar sensory scores in terms of aroma, taste, and water solubility, with a very slight difference in color. However, MS25, MS35 and MS45 indicated the torque at 10 Nm/cm3, while MS5 and MS 15 exhibited higher torque at 18, and 25 Nm/cm3, respectively. Extruded process flavorings from MS25 were analyzed for their flavor profiles by gas chromatography-mass spectrometry. Twelve volatile compounds including the key volatile compounds for sulfurous and vegetable odor type, dimethyl disulfide, methional, and methanethiol, were found. Four pyrazine compounds presented nutty, musty and caramelly odor; and 3-hydroxybutan-2-one and heptane-2,3-dione, which gave buttery odor type, were also detected. The results demonstrated a successful production of process flavorings using modified starch as carrier to facilitate and reduce the torque during the extrusion process.


Subject(s)
Methionine , Starch , Starch/chemistry , Racemethionine , Odorants/analysis , Water , Glucose
6.
PLoS One ; 17(11): e0276080, 2022.
Article in English | MEDLINE | ID: mdl-36322524

ABSTRACT

The use of by-products of salted jellyfish for gelatin production offers valuable gelatin products rather than animal feed. Several washes or washing machines have reported removing salt in salted jellyfish. However, the green ultrasound technique has never been reported for the desalination of salted jellyfish. The objectives were to determine how effectively the raw material's salt removal was done by combining the traditional wash and then subjected to the ultrasonic waves in a sonication bath for 20-100 min. For gelatin production, the ultrasonicated jellyfish by-products were pretreated with sodium hydroxide and hydrochloric acid, washed, and extracted with hot water for 4, 6, and 8 h. Results showed that the increased duration of ultrasound time increased the desalination rate. The highest desalination rate of 100% was achieved using 100 min ultrasonic time operated at a fixed frequency (40 kHz) and power (220 W). The jellyfish gelatin extracted for 4, 6, and 8 h showed gel strengths in 121-447, 120-278, and 91-248 g. The 80 min ultrasonicated sample and hot water extraction for 8 h (JFG80-8) showed the highest gel yield of 32.69%, with a gel strength of 114.92 g. Still, the 40 min ultrasonicated sample with 4 h of extraction delivered the highest gel strength of 447.01 g (JFG40-4) and the lower yield of 10.60%. The melting and gelling temperatures of jellyfish gelatin from ultrasonicated samples ranged from 15-25°C and 5-12°C, which are lower than bovine gelatin (BG) and fish gelatin (FG). Monitored by FITR, the synergistic effect of extended sonication time (from 20-100 min) with 4 h extraction time at 80 °C caused amide I, II, and III changes. Based on the proteomic results, the peptide similarity of JFG40-4, having the highest gel strength, was 17, 23, or 20 peptides compared to either BG, FG, or JFG100-8 having the lowest gel strength. The 14 peptides were similarly found in all JFG40-4, BG, and FG samples. In conclusion, for the first time in this report, the improved jellyfish gel can be achieved when combined with traditional wash and 40 min ultrasonication of desalted jellyfish and extraction time of 4 h at 80 °C.


Subject(s)
Cnidaria , Gelatin , Animals , Cattle , Proteomics , Gels , Colloids , Fishes , Sodium Chloride , Peptides , Water
7.
J Food Sci ; 87(3): 895-910, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35122252

ABSTRACT

The conventional method to produce process flavoring is non-continuous, time consuming, and generates a high volume of effluent. This research aimed to evaluate the use of methionine, thiamine, and reducing sugars to develop process flavorings by direct extrusion, as a potential alternative to the conventional method. The mixed substrates consisted of methionine: d-xylose (MX), methionine: dextrose (MD), thiamine: d-xylose (TX), and thiamine: dextrose (TD) at 80:20 w/w. Three barrel temperatures of the extruder were controlled at 65, 80, and 50°C, respectively, a screw speed of 30 rpm and feed rate at 3 kg/hr. Appearance, pH, odor, and taste description of the product from each mixture were determined. Volatile compounds, possibly occurred from the Maillard reaction during the extrusion were analyzed by gas chromatography-mass spectrometry. The products exhibited different levels of meaty odor and bitter taste. Those obtained from MD showed the highest L* (lightness, 85.37) and frequency for just-about-right in terms of taste (33.33%) and odor (60.00%). Products from MX and MD presented the highest frequency for intense taste, and higher frequency for color compared to TX and TD. More volatile compounds were detected from the use of methionine than from thiamine. The key meaty odor compounds such as dimethyl disulfide, dimethyl trisulfide, methional, and methanethiol were found in the samples from MX and MD, while only dimethyl disulfide was detected in the mixture of TX and TD. Finally, the results demonstrated that direct extrusion reaction from methionine and d-xylose or dextrose is a highly efficient method to produce meaty process flavorings. PRACTICAL APPLICATION: The manuscript describes the production of process flavorings that exhibited meaty flavors by extrusion process. Physical properties, volatile profiles, and sensory evaluation of the products from methionine, thiamine, d-xylose, and glucose were evaluated. The extruded products from methionine and dextrose exhibited acceptable color, taste, and odor and presented many volatiles compounds contributing to meaty flavors. The results revealed the high potential to use a direct extrusion process with very low effluent, compared to the conventional method, to produce meaty flavors for industrial application.


Subject(s)
Taste , Xylose , Glucose/chemistry , Maillard Reaction , Methionine , Thiamine , Xylose/chemistry
8.
PeerJ ; 9: e11134, 2021.
Article in English | MEDLINE | ID: mdl-33828923

ABSTRACT

BACKGROUND: Fresh Gac (Momordica cochinchinensis) fruit is rich in carotenoids, mainly ß-carotene and lycopene, but these compounds are sensitive to degradation. Spray drying is used to encapsulate the sensitive ß-carotene and lycopene with different materials. Only a few reports of using highly branched cyclodextrin (HBCD) have been published. Additionally, studies of ß-carotene and lycopene losses in Gac powders during storage are limited. Therefore, the encapsulation of ß-carotene and lycopene of Gac aril with HBCD by spray drying at different inlet temperatures were compared. The shelf life of ß-carotene and lycopene during storage was also calculated. METHODS: The fresh Gac aril was separated and kept frozen before the experiment. Gac aril and water (1:5 w/v) were centrifuged at 8,000 g at 20 °C for 15 min using a high-speed centrifuge (Sorval; Dupont, Wilmington, DE, USA). The supernatant was filtered twice and concentrated until 15° Brix using a rotary evaporator (R-200; Buchi, Flawil, Switzerland). The mixture of concentrated aril extract and highly branched cyclodextrin at 5% (w/v) was dried at three inlet temperatures by a spray dryer (B-290; Buchi, Flawil, Switzerland) with drying air flow rate, compressor air pressure, and feed rate set at 473 L/h, 40 m3/h, and 3 mL/min, respectively . The physicochemical qualities, particle image morphology, and estimated storage time of ß-carotene and lycopene were determined. RESULTS: Increased inlet temperatures of spray drying decreased the bulk density, ß-carotene, and lycopene content of spray-dried powders significantly. The color values of dried powders had significant differences in yellowness (b*) and chroma, but not lightness (L*), redness (a*), and hue when the inlet temperature increased from 160 °C to 180 °C. The maximum reduction of ß-carotene and lycopene observed during storage at 55 °C was 90.88% and 91.11% for 33 and 18 days. For ß-carotene, the estimated shelf-life (retention of 50% of ß-carotene) was 9.9, 48.4, and 91.6 days at 25 °C, 10 °C, and 4 °C. The shelf-life of lycopene was 26, 176, and 357 days at 25 °C, 10 °C, and 4 °C, respectively. HBCD could be potentially used as an encapsulating agent in spray-dried Gac aril, but the shelf-life of ß-carotene and lycopene needs to be improved to be useful as a food ingredient.

9.
Food Sci Nutr ; 9(2): 616-624, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598147

ABSTRACT

Gamma oryzanol (GO), a bioactive ingredient found in rice bran oil, performs a variety of biological effects such as antioxidant activity, reduction of total cholesterol, anti-inflammation, and antidiabetes. However, GO is water-insoluble and normally degrades through oxidation. Thus a nano-encapsulation technique was investigated to improve its stability and quality. In this research, gamma oryzanol was successfully encapsulated into zein nanoparticles. The fabrication parameters including pH, zein concentration (0.3, 0.4, and 0.5% w/v), and % GO loading (30, 40, and 50% by weight) were investigated. Particle size, zeta potential, yield, encapsulation efficiency and the stability or GO retention during the storage were determined. The morphology of gamma oryzanol loaded zein nanoparticles (GOZNs) was observed by scanning electron micrographs and transmission electron microscope. The increase of zein concentration and % GO loading resulted to an increase of yield, encapsulation efficiency, and particle size. The particle size of the GOZNs ranged from 93.24-350.93, and 144.13-833.27, and 145.27-993.13 nm for each zein concentration with 3 loading levels, respectively. Nano-encapsulation exhibited higher % GO retention compared with nonencapsulated GO during 60 days storage both at 4°C and -18°C. In vitro study indicated the sustained release of GO in the simulated gastric fluid followed by simulated intestinal fluid. This finding indicated a high potential for the application of insoluble GO with improved stability by encapsulation with the hydrophobic zein protein.

10.
PLoS One ; 16(6): e0253254, 2021.
Article in English | MEDLINE | ID: mdl-34143821

ABSTRACT

Marine gelatin is one of the food proteins used in food and non-food products, offering desirable functionalities such as gelling, thickening, and binding. Jellyfish has been chosen for this gelatin research, in view of the benefits of its main collagen protein and lower fat content, which may reduce the amounts of chemicals used in the preparative steps of gelatin production. To date, the lack of identified proteins in gelatin has limited the understanding of differentiating intrinsic factors quantitatively and qualitatively affecting gel properties. No comparison has been made between marine gelatin of fish and that of jellyfish, regarding protein type and distribution differences. Therefore, the study aimed at characterizing jellyfish gelatin extracted from by-products, that are i.e., pieces that have broken off during the grading and cleaning step of salted jellyfish processing. Different pretreatment by hydrochloric acid (HCl) concentrations (0.1 and 0.2 M) and hot water extraction time (12 and 24 h) were studied as factors in jellyfish gelatin extraction. The resultant jellyfish gelatin with the highest gel strength (JFG1), as well as two commercial gelatins of fish gelatin (FG) and bovine gelatin (BG), were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results show that the jellyfish gelatin (JFG1) extracted with 0.1 M HCl at 60°C for 12 h delivered a maximum gel strength of 323.74 g, which is lower than for FG and BG, exhibiting 640.65 and 540.06 g, respectively. The gelling and melting temperatures of JFG1 were 7.1°C and 20.5°C, displaying a cold set gel and unstable gel at room temperature, whereas the gelling and melting temperatures of FG and BG were 17.4°C, 21.3°C, and 27.5°C, 32.7°C, respectively. Proteomic analysis shows that 29 proteins, of which 10 are types of collagen proteins and 19 are non-collagen proteins, are common to all BG, FG, and JFG1, and that JFG1 is missing 3 other collagen proteins (collagen alpha-2 (XI chain), collagen alpha-2 (I chain), and collagen alpha-2 (IV chain), that are important to gel networks. Thus, the lack of these 3 collagen types influences the inferior gel properties of jellyfish gelatin.


Subject(s)
Collagen/chemistry , Gelatin/chemistry , Gels/chemistry , Animals , Chromatography, Liquid , Proteomics , Scyphozoa , Tandem Mass Spectrometry
11.
Heliyon ; 6(12): e05817, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33409393

ABSTRACT

Gelatin gummy jelly is a chewable snack with attractive synthetic colour and flavour. The use of natural carotenoid colourant, found in Gac aril or pulp, potentially benefits consumer health. The objectives of this study were to formulate gummy prototypes designed with varying levels of gelatin, sucrose, and glucose syrup, to vary the addition of whey protein concentrate (WPC) and freeze-dried (FD) Gac aril and pulp to the selected prototype, and to investigate changes in coloured WPC-mixed gelatin gummy during storage. The prototype containing gelatin, sucrose, and glucose syrup at 10, 50, and 40%, respectively, was selected based on its hardness, gumminess, and chewiness values. The addition of WPC (0.75%) to the selected prototype increased the values of hardness, springiness, and gumminess but reduced the values of cohesiveness and chewiness. Coloured WPC-mixed gelatin gummy with blends (0.5 g/100 g) of FD Gac aril and pulp at a ratio of 75:25 appeared yellow-orange and received the highest acceptance score. The quality of coloured WPC-mixed gelatin changed to a dull colour and a softer texture gel during storage. Therefore, Gac-coloured WPC-mixed gelatin gummy improvement for colour and texture qualities should be of concern for shelf-life stability.

SELECTION OF CITATIONS
SEARCH DETAIL