Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.202
Filter
1.
Cell ; 181(6): 1263-1275.e16, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32437658

ABSTRACT

Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.


Subject(s)
Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Intestines/immunology , Intestines/microbiology , Th17 Cells/immunology , Th17 Cells/physiology , Adolescent , Adult , Animals , Diet, High-Fat/methods , Diet, Ketogenic/methods , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microbiota/immunology , Microbiota/physiology , Middle Aged , Th17 Cells/microbiology , Young Adult
2.
Cell ; 166(3): 755-765, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27372738

ABSTRACT

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Subject(s)
Neoplasm Proteins/genetics , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Proteome , Acetylation , Chromosomal Instability , DNA Repair , DNA, Neoplasm , Female , Gene Dosage , Humans , Mass Spectrometry , Phosphoproteins/genetics , Protein Processing, Post-Translational , Survival Analysis
3.
Nature ; 632(8024): 301-306, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048825

ABSTRACT

Molecule-based selective contacts have become a crucial component to ensure high-efficiency inverted perovskite solar cells1-5. These molecules always consist of a conjugated core with heteroatom substitution to render the desirable carrier-transport capability6-9. So far, the design of successful conjugation cores has been limited to two N-substituted π-conjugated structures, carbazole and triphenylamine, with molecular optimization evolving around their derivatives2,5,10-12. However, further improvement of the device longevity has been hampered by the concomitant limitations of the molecular stability induced by such heteroatom-substituted structures13,14. A more robust molecular contact without sacrificing the electronic properties is in urgent demand, but remains a challenge. Here we report a peri-fused polyaromatic core structure without heteroatom substitution that yields superior carrier transport and selectivity over conventional heteroatom-substituted core structures. This core structure produced a relatively chemically inert and structurally rigid molecular contact, which considerably improved the performance of perovskite solar cells in terms of both efficiency and durability. The champion device showed an efficiency up to 26.1% with greatly improved longevity under different accelerated-ageing tests.

4.
Mol Cell ; 82(21): 4099-4115.e9, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36208627

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm. We found that SIRT6 binds saturated fatty acids, especially palmitic acid. This binding leads to its nuclear export, where it deacetylates long-chain acyl-CoA synthase 5 (ACSL5), thereby facilitating fatty acid oxidation. High-fat diet-induced NAFLD is suppressed by ACSL5 hepatic overexpression but is exacerbated by its depletion. As confirmation, overexpression of a deacetylated ACSL5 mimic attenuated NAFLD in Sirt6 liver-specific knockout mice. Moreover, NASH-hepatic tissues from both patients and diet-fed mice exhibited significantly reduced cytoplasmic SIRT6 levels and increased ACSL5 acetylation. The SIRT6/ACSL5 signaling pathway has a critical role in NAFLD progression and might constitute an avenue for therapeutic intervention.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sirtuins , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Acyl Coenzyme A/metabolism , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism , Mice, Knockout , Fatty Acids/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Cytoplasm/metabolism
5.
Nature ; 620(7973): 323-327, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37344595

ABSTRACT

The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.

6.
Proc Natl Acad Sci U S A ; 121(34): e2409341121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39145939

ABSTRACT

Vesicular transport relies on multimeric trafficking complexes to capture cargo and drive vesicle budding and fusion. Faithful assembly of the trafficking complexes is essential to their functions but remains largely unexplored. Assembly of AP2 adaptor, a heterotetrameric protein complex regulating clathrin-mediated endocytosis, is assisted by the chaperone AAGAB. Here, we found that AAGAB initiates AP2 assembly by stabilizing its α and σ2 subunits, but the AAGAB:α:σ2 complex cannot recruit additional AP2 subunits. We identified CCDC32 as another chaperone regulating AP2 assembly. CCDC32 recognizes the AAGAB:α:σ2 complex, and its binding leads to the formation of an α:σ2:CCDC32 ternary complex. The α:σ2:CCDC32 complex serves as a template that sequentially recruits the µ2 and ß2 subunits of AP2 to complete AP2 assembly, accompanied by CCDC32 release. The AP2-regulating function of CCDC32 is disrupted by a disease-causing mutation. These findings demonstrate that AP2 is assembled by a handover mechanism switching from AAGAB-based initiation complexes to CCDC32-based template complexes. A similar mechanism may govern the assembly of other trafficking complexes exhibiting the same configuration as AP2.


Subject(s)
Adaptor Protein Complex 2 , Molecular Chaperones , Adaptor Protein Complex 2/metabolism , Adaptor Protein Complex 2/genetics , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Protein Binding , Endocytosis/physiology , Protein Transport
7.
Proc Natl Acad Sci U S A ; 121(35): e2320804121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172790

ABSTRACT

Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor-suppressor protein that regulates various cellular pathways, including those that are essential for preserving genome stability. One essential mechanism involves a BRCA1-A complex that is recruited to double-strand breaks (DSBs) by RAP80 before initiating DNA damage repair (DDR). How RAP80 itself is recruited to DNA damage sites, however, is unclear. Here, we demonstrate an intrinsic correlation between a methyltransferase DOT1L-mediated RAP80 methylation and BRCA1-A complex chromatin recruitment that occurs during cancer cell radiotherapy resistance. Mechanistically, DOT1L is quickly recruited onto chromatin and methylates RAP80 at multiple lysines in response to DNA damage. Methylated RAP80 is then indispensable for binding to ubiquitinated H2A and subsequently triggering BRCA1-A complex recruitment onto DSBs. Importantly, DOT1L-catalyzed RAP80 methylation and recruitment of BRCA1 have clinical relevance, as inhibition of DOT1L or RAP80 methylation seems to enhance the radiosensitivity of cancer cells both in vivo and in vitro. These data reveal a crucial role for DOT1L in DDR through initiating recruitment of RAP80 and BRCA1 onto chromatin and underscore a therapeutic strategy based on targeting DOT1L to overcome tumor radiotherapy resistance.


Subject(s)
BRCA1 Protein , DNA Repair , Histone Chaperones , Histone-Lysine N-Methyltransferase , Animals , Humans , Mice , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Cell Line, Tumor , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Methylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Histone Chaperones/metabolism , Histone Chaperones/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Methylation , Methyltransferases/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Radiation Tolerance/genetics
8.
EMBO Rep ; 25(3): 1282-1309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316900

ABSTRACT

UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.


Subject(s)
Autistic Disorder , Animals , Mice , Mice, Transgenic , Neurons/metabolism , Protein Processing, Post-Translational , Synaptic Transmission/physiology
9.
Nucleic Acids Res ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106166

ABSTRACT

Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.

10.
Proc Natl Acad Sci U S A ; 120(2): e2205199120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598941

ABSTRACT

Assembly of protein complexes is facilitated by assembly chaperones. Alpha and gamma adaptin-binding protein (AAGAB) is a chaperone governing the assembly of the heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) involved in clathrin-mediated membrane trafficking. Here, we found that before AP1/2 binding, AAGAB exists as a homodimer. AAGAB dimerization is mediated by its C-terminal domain (CTD), which is critical for AAGAB stability and is missing in mutant proteins found in patients with the skin disease punctate palmoplantar keratoderma type 1 (PPKP1). We solved the crystal structure of the dimerization-mediating CTD, revealing an antiparallel dimer of bent helices. Interestingly, AAGAB uses the same CTD to recognize and stabilize the γ subunit in the AP1 complex and the α subunit in the AP2 complex, forming binary complexes containing only one copy of AAGAB. These findings demonstrate a dual role of CTD in stabilizing resting AAGAB and binding to substrates, providing a molecular explanation for disease-causing AAGAB mutations. The oligomerization state transition mechanism may also underlie the functions of other assembly chaperones.


Subject(s)
Adaptor Proteins, Vesicular Transport , Keratoderma, Palmoplantar , Humans , Adaptor Proteins, Vesicular Transport/metabolism , Carrier Proteins/genetics , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Clathrin/metabolism , Adaptor Protein Complex 2/genetics , Adaptor Protein Complex 2/metabolism
11.
Nat Mater ; 23(1): 95-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036625

ABSTRACT

Inherent symmetry breaking at the interface has been fundamental to a myriad of physical effects and functionalities, such as efficient spin-charge interconversion, exotic magnetic structures and an emergent bulk photovoltaic effect. It has recently been demonstrated that interface asymmetry can induce sizable piezoelectric effects in heterostructures, even those consisting of centrosymmetric semiconductors, which provides flexibility to develop and optimize electromechanical coupling phenomena. Here, by targeted engineering of the interface symmetry, we achieve piezoelectric phenomena behaving as the electrical analogue of the negative Poisson's ratio. This effect, termed the auxetic piezoelectric effect, exhibits the same sign for the longitudinal (d33) and transverse (d31, d32) piezoelectric coefficients, enabling a simultaneous contraction or expansion in all directions under an external electrical stimulus. The signs of the transverse coefficients can be further tuned via in-plane symmetry anisotropy. The effects exist in a wide range of material systems and exhibit substantial coefficients, indicating potential implications for all-semiconductor actuator, sensor and filter applications.

12.
PLoS Pathog ; 19(6): e1011430, 2023 06.
Article in English | MEDLINE | ID: mdl-37262100

ABSTRACT

The mitochondrial electron transport chain (ETC) of apicomplexan parasites differs considerably from the ETC of the animals that these parasites infect, and is the target of numerous anti-parasitic drugs. The cytochrome c oxidase complex (Complex IV) of the apicomplexan Toxoplasma gondii ETC is more than twice the mass and contains subunits not found in human Complex IV, including a 13 kDa protein termed TgApiCox13. TgApiCox13 is homologous to a human iron-sulfur (Fe-S) cluster-containing protein called the mitochondrial inner NEET protein (HsMiNT) which is not a component of Complex IV in humans. Here, we establish that TgApiCox13 is a critical component of Complex IV in T. gondii, required for complex activity and stability. Furthermore, we demonstrate that TgApiCox13, like its human homolog, binds two Fe-S clusters. We show that the Fe-S clusters of TgApiCox13 are critical for ETC function, having an essential role in mediating Complex IV integrity. Our study provides the first functional characterisation of an Fe-S protein in Complex IV.


Subject(s)
Parasites , Toxoplasma , Animals , Humans , Toxoplasma/metabolism , Parasites/metabolism , Electron Transport Complex IV/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
13.
PLoS Pathog ; 19(10): e1011662, 2023 10.
Article in English | MEDLINE | ID: mdl-37788227

ABSTRACT

Coxsackievirus A10 (CVA10) has recently emerged as one of the major causative agents of hand, foot, and mouth disease. CVA10 may also cause a variety of complications. No approved vaccine or drug is currently available for CVA10. The residues of CVA10 critical for viral attachment, infectivity and in vivo pathogenicity have not been identified by experiment. Here, we report the identification of CVA10 residues important for binding to cellular receptor KREMEN1. We identified VP2 N142 as a key receptor-binding residue by screening of CVA10 mutants resistant to neutralization by soluble KREMEN1 protein. The receptor-binding residue N142 is exposed on the canyon rim but highly conserved in all naturally occurring CVA10 strains, which provides a counterexample to the canyon hypothesis. Residue N142 when mutated drastically reduced receptor-binding activity, resulting in decreased viral attachment and infection in cell culture. More importantly, residue N142 when mutated reduced viral replication in limb muscle and spinal cord of infected mice, leading to lower mortality and less severe clinical symptoms. Additionally, residue N142 when mutated could decrease viral binding affinity to anti-CVA10 polyclonal antibodies and a neutralizing monoclonal antibody and render CVA10 resistant to neutralization by the anti-CVA10 antibodies. Overall, our study highlights the essential role of VP2 residue N142 of CVA10 in the interactions with KREMEN1 receptor and neutralizing antibodies and viral virulence in mice, facilitating the understanding of the molecular mechanisms of CVA10 infection and immunity. Our study also provides important information for rational development of antibody-based treatment and vaccines against CVA10 infection.


Subject(s)
Antibodies, Neutralizing , Enterovirus , Animals , Mice , Enterovirus/genetics , Virulence , Antibodies, Viral
14.
Bioessays ; 45(3): e2200198, 2023 03.
Article in English | MEDLINE | ID: mdl-36529693

ABSTRACT

Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.


Subject(s)
Methyltransferases , Nucleotides , Animals , RNA, Messenger/metabolism , Methyltransferases/genetics , Methylation , Nucleotides/genetics , Nucleotides/metabolism , Adenosine/genetics , Eukaryota/genetics
15.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37503842

ABSTRACT

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Subject(s)
DNA Repair , Humans , Cell Line, Tumor , DNA Damage , Histone Deacetylase 6/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
Proc Natl Acad Sci U S A ; 119(33): e2200285119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939686

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) inhibitor of cyclic GMP-AMP synthase (cGAS) (KicGAS) encoded by ORF52 is a conserved major tegument protein of KSHV and the first reported viral inhibitor of cGAS. In our previous study, we found that KicGAS is highly oligomerized in solution and that oligomerization is required for its cooperative DNA binding and for inhibiting DNA-induced phase separation and activation of cGAS. However, how KicGAS oligomerizes remained unclear. Here, we present the crystal structure of KicGAS at 2.5 Å resolution, which reveals an "L"-shaped molecule with each arm of the L essentially formed by a single α helix (α1 and α2). Antiparallel dimerization of α2 helices from two KicGAS molecules leads to a unique "Z"-shaped dimer. Surprisingly, α1 is also a dimerization domain. It forms a parallel dimeric leucine zipper with the α1 from a neighboring dimer, leading to the formation of an infinite chain of KicGAS dimers. Residues involved in leucine zipper dimer formation are among the most conserved residues across ORF52 homologs of gammaherpesviruses. The self-oligomerization increases the valence and cooperativity of interaction with DNA. The resultant multivalent interaction is critical for the formation of liquid condensates with DNA and consequent sequestration of DNA from being sensed by cGAS, explaining its role in restricting cGAS activation. The structure presented here not only provides a mechanistic understanding of the function of KicGAS but also informs a molecular target for rational design of antivirals against KSHV and related viruses.


Subject(s)
Herpesvirus 8, Human , Nucleotidyltransferases , Viral Structural Proteins , Herpesvirus 8, Human/metabolism , Humans , Nucleotidyltransferases/metabolism , Protein Domains , Protein Multimerization , Viral Structural Proteins/chemistry
17.
J Biol Chem ; 299(3): 102986, 2023 03.
Article in English | MEDLINE | ID: mdl-36754281

ABSTRACT

Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human viruses that causes significant morbidity and mortality worldwide. To persist in the cell and consequently cause disease, DENV is evolved with mechanisms to suppress the induction of type I interferons by antagonizing cGAS-STING signaling. Using recombinant proteins and in vitro cleavage assays, we have shown that the DENV protease NS2B3 is capable of cleaving cGAS in the N-terminal region without disrupting the C-terminal catalytic center. This generates two major cleavage products: cleavage product N-terminal (CP-N) and cleavage product C-terminal (CP-C). We observed reduction in DNA-binding affinity of CP-C as compared to full-length cGAS. Reduction in DNA-binding affinity is also correlated with the decrease in enzymatic activity of CP-C. CP-N, on the other hand, has almost comparable DNA-binding ability as that of the full-length cGAS. In fact, CP-N competitively inhibits cyclic GMP-AMP production by both full-length cGAS and CP-C. We hypothesize that high DNA-binding affinity of CP-N enables it to sequester the DNA from CP-C and noncleaved full-length cGAS and thus reduces the rate of enzyme activation and cyclic GMP-AMP synthesis. Furthermore, we found that NS2B3 physically interacts with full-length cGAS and CP-C, laying the basis for their shuttling to and eventual degradation in the autophagosome. Overall, our study highlights a multifaceted and effective strategy by which an RNA virus antagonizes cGAS-STING signaling which may be useful for the design of antivirals targeting viral proteases.


Subject(s)
Dengue Virus , Nucleotidyltransferases , Peptide Hydrolases , Humans , Dengue Virus/enzymology , Immunity, Innate , Nucleotidyltransferases/metabolism , Peptide Hydrolases/metabolism
18.
Clin Infect Dis ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920297

ABSTRACT

BACKGROUND: Remdesivir, an RNA-polymerase prodrug inhibitor approved for treatment of COVID-19, shortens recovery time and improves clinical outcomes. This prespecified analysis compared remdesivir plus standard-of-care (SOC) with SOC alone in adults hospitalized with COVID-19 requiring oxygen support in the early stage of the pandemic. METHODS: Data for 10-day remdesivir treatment plus SOC from the extension phase of an open-label study (NCT04292899) were compared with real-world, retrospective data on SOC alone (EUPAS34303). Both studies included patients aged ≥18 years hospitalized with SARS-CoV-2 up to 30 May 2020, with oxygen saturation ≤94%, on room air or supplemental oxygen (all forms), and with pulmonary infiltrates. Propensity score weighting was used to balance patient demographics and clinical characteristics across treatment groups. The primary endpoint was time to all-cause mortality or end of study (day 28). Time-to-discharge, with a 10-day landmark to account for duration of remdesivir treatment, was a secondary endpoint. RESULTS: 1974 patients treated with remdesivir plus SOC, and 1426 with SOC alone, were included after weighting. Remdesivir significantly reduced mortality versus SOC (hazard ratio [HR]: 0.46, 95% confidence interval: 0.39-0.54). This association was observed at each oxygen support level, with the lowest HR for patients on low-flow oxygen. Remdesivir significantly increased the likelihood of discharge at day 28 versus SOC in the 10-day landmark analysis (HR: 1.64; 95% confidence interval: 1.43-1.87). CONCLUSIONS: Remdesivir plus early-2020 SOC was associated with a 54% lower mortality risk and shorter hospital stays compared with SOC alone in patients hospitalized with COVID-19 requiring oxygen support. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT04292899 and EUPAS34303.

19.
Breast Cancer Res ; 26(1): 116, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010116

ABSTRACT

BACKGROUND: Higher mammographic density (MD), a radiological measure of the proportion of fibroglandular tissue in the breast, and lower terminal duct lobular unit (TDLU) involution, a histological measure of the amount of epithelial tissue in the breast, are independent breast cancer risk factors. Previous studies among predominantly white women have associated reduced TDLU involution with higher MD. METHODS: In this cohort of 611 invasive breast cancer patients (ages 23-91 years [58.4% ≥ 50 years]) from China, where breast cancer incidence rates are lower and the prevalence of dense breasts is higher compared with Western countries, we examined the associations between TDLU involution assessed in tumor-adjacent normal breast tissue and quantitative MD assessed in the contralateral breast obtained from the VolparaDensity software. Associations were estimated using generalized linear models with MD measures as the outcome variables (log-transformed), TDLU measures as explanatory variables (categorized into quartiles or tertiles), and adjusted for age, body mass index, parity, age at menarche and breast cancer subtype. RESULTS: We found that, among all women, percent dense volume (PDV) was positively associated with TDLU count (highest tertile vs. zero: Expbeta = 1.28, 95% confidence interval [CI] 1.08-1.51, ptrend = < .0001), TDLU span (highest vs. lowest tertile: Expbeta = 1.23, 95% CI 1.11-1.37, ptrend = < .0001) and acini count/TDLU (highest vs. lowest tertile: Expbeta = 1.22, 95% CI 1.09-1.37, ptrend = 0.0005), while non-dense volume (NDV) was inversely associated with these measures. Similar trend was observed for absolute dense volume (ADV) after the adjustment of total breast volume, although the associations for ADV were in general weaker than those for PDV. The MD-TDLU associations were generally more pronounced among breast cancer patients ≥ 50 years and those with luminal A tumors compared with patients < 50 years and with luminal B tumors. CONCLUSIONS: Our findings based on quantitative MD and TDLU involution measures among Chinese breast cancer patients are largely consistent with those reported in Western populations and may provide additional insights into the complexity of the relationship, which varies by age, and possibly breast cancer subtype.


Subject(s)
Breast Density , Breast Neoplasms , Mammography , Humans , Female , Middle Aged , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Adult , Aged , China/epidemiology , Mammography/methods , Aged, 80 and over , Young Adult , Risk Factors , Breast/diagnostic imaging , Breast/pathology , Mammary Glands, Human/diagnostic imaging , Mammary Glands, Human/pathology , Mammary Glands, Human/abnormalities , East Asian People
20.
Mol Med ; 30(1): 100, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992588

ABSTRACT

BACKGROUND: Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS: A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS: Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION: BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.


Subject(s)
AMP-Activated Protein Kinases , Clusterin , DNA Methylation , Diabetes Mellitus, Experimental , Ferroptosis , Promoter Regions, Genetic , Signal Transduction , Testis , Animals , Male , Mice , AMP-Activated Protein Kinases/metabolism , Cell Line , Clusterin/genetics , Clusterin/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/complications , DNA Methyltransferase 3A/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Ferroptosis/genetics , Mice, Inbred C57BL , Testis/metabolism , Testis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL