Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(21): 59128-59150, 2023 May.
Article in English | MEDLINE | ID: mdl-37041362

ABSTRACT

Metals are essential in our daily lives and have a finite supply, being simultaneously contaminants of concern. The current carbon emissions and environmental impact of mining are untenable. We need to reclaim metals sustainably from secondary resources, like waste. Biotechnology can be applied in metal recovery from waste streams like fly ashes and bottom ashes of municipal solid waste incineration (MSWI). They represent substantial substance flows, with roughly 46 million tons of MSWI ashes produced annually globally, equivalent in elemental richness to low-grade ores for metal recovery. Next-generation methods for resource recovery, as in particular bioleaching, give the opportunity to recover critical materials and metals, appropriately purified for noble applications, in waste treatment chains inspired by circular economy thinking. In this critical review, we can identify three main lines of discussion: (1) MSWI material characterization and related environmental issues; (2) currently available processes for recycling and metal recovery; and (3) microbially assisted processes for potential recycling and metal recovery. Research trends are chiefly oriented to the potential exploitation of bioprocesses in the industry. Biotechnology for resource recovery shows increasing effectiveness especially downstream the production chains, i.e., in the waste management sector. Therefore, this critical discussion will help assessing the industrial potential of biotechnology for urban mining of municipal, post-combustion waste.


Subject(s)
Metals, Heavy , Refuse Disposal , Waste Management , Solid Waste/analysis , Incineration , Waste Management/methods , Metals , Coal Ash , Carbon , Metals, Heavy/analysis
2.
Chemosphere ; 330: 138572, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37088212

ABSTRACT

Microplastics (MPs) are widely distributed in the marine environment, posing a significant threat to marine biota. The contribution of anthropogenic and terrestrial sources to the aquatic ecosystem has led to an increase in MPs findings, and their abundance in aquatic biota has been reported to be of concern. MPs are formed mainly via photo degradation of macroplastics (large plastic debris), and their release into the environment is a result of the degradation of additives. Eco-toxicological risks are increasing for marine organisms, due to the ingestion of MPs, which cause damage to gastrointestinal (GI) tracts and stomach. Plastics with a size <5 mm are considered MPs, and they are commonly identified by Raman spectroscopy, Fourier transfer infrared (FTIR) spectroscopy, and Laser direct infrared (LDIR). The size, density and additives are the main factors influencing the abundance and bioavailability of MPs. The most abundant type of MPs found in fishes are fiber, polystyrenes, and fragments. These microscale pellets cause physiological stress and growth deformities by targeting the GI tracts of fishes and other biota. Approximately 80% MPs come from terrestrial sources, either primary, generated during different products such as skin care products, tires production and the use of MPs as carrier for pharmaceutical products, or secondary plastics, disposed of near coastal areas and water bodies. The issue of MPs and their potential effects on the marine ecosystem require proper attention. Therefore, this study conducted an extensive literature review on assessing MPs levels in fishes, sediments, seawater, their sources, and effects on marine biota (especially on fishes), chemo-physical behavior and the techniques used for their identification.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Plastics/chemistry , Microplastics , Ecosystem , Water Pollutants, Chemical/analysis , Aquatic Organisms , Fishes , Environmental Monitoring/methods
3.
Sci Total Environ ; 826: 154167, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35231522

ABSTRACT

The inter-element relationships and the forms in which metals exist strongly influence their mobility and, in turn, have a signature on the environment and human health. Located in the northern Apennines within the Emilia-Romagna region, the Ridracoli artificial lake is one of Italy's most important reservoirs that provides drinking water for about one million people. This work characterized the reservoir sediments by ICP-MS after aqua regia digestion (ARD), comparing the limits by law to assess environmental compliance and XRF data from the same sample-set taken as total concentrations. The Degree of Extraction (DE) from pseudo-total concentrations of ARD analysis allows assessing elements mobility and the associated environmental risk. Principal Component Analysis (PCA) on the obtained data helped to investigate inter-element relationships better; for example, we observed carbonate-sourced sediments, many trace elements (e.g., Ni, Zn) linked to FeMn oxyhydroxides, the importance of the grain size in elements distribution, and the central role of the organic matter in element partitioning. In addition, a Sequential Extraction Procedure (SEP) was applied to the sediment samples to understand the partitioning of many analytes, including Potentially Harmful Elements (PHE) such as Fe, Mn, Cu, Cr, Ni, Pb, and Zn. The results indicated that the most easily mobilized forms were predominant in the area near the dam, in correspondence to sediments affected by the formation of a seasonal anoxic layer.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Digestion , Environmental Monitoring/methods , Geologic Sediments/analysis , Humans , Hydrochloric Acid , Lakes , Metals, Heavy/analysis , Nitric Acid , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL