Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Bioorg Chem ; 144: 107170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335755

ABSTRACT

Herein, we describe the rational design, synthesis and in vitro functional characterization of new heme-dependent, direct soluble guanylyl cyclase (sGC) agonists. These new compounds bear a 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton, modified to enable efficient sGC binding and stimulation. To gain insights into structure-activity relationships, the N6-alkylation of the skeleton was explored, while a pyrimidine ring, substituted with various C5'-polar groups, was installed at position C3. Among the newly synthesized 1H-pyrazolo[3,4-c]pyridin-7(6H)-ones, derivatives 14b, 15b and 16a display characteristic features of sGC "stimulators" in A7r5 vascular smooth muscle cells in vitro. They strongly synergize with the NO donor, sodium nitroprusside (SNP) in inducing cGMP generation in a manner that requires the presence of a reduced heme moiety associated with sGC, and elevate the cGMP-responsive phosphorylation of the protein VASP at Ser239. In line with their sGC stimulating capacity, docking calculations of derivatives 16a, 15(a-c) on a cryo-EM structure of human sGC (hsGC) in an ΝΟ-activated state indicated the implication of 1H-pyrazolo[3,4-c]pyridin-7(6H)-one skeleton in efficient bonding interactions with the recently identified region that binds known sGC stimulators, while the presence of either a N6-H or N6-methyl group pointed to enhanced binding affinity. Moreover, the in vitro functional effects of our newly identified sGC stimulators were compatible with a beneficial role in vascular homeostasis. Specifically, derivative 14b reduced A7r5 cell proliferation, while 16a dampened the expression of adhesion molecules ICAM-1 and P/E-Selectin in Human Umbilical Vein Endothelial Cells (HUVECs), as well as the subsequent adhesion of U937 leukocytes to the HUVECs, triggered by tumor necrosis factor alpha (TNF-α) or interleukin-1 beta (IL-1ß). The fact that these compounds elevate cGMP only in the presence of NO may indicate a novel way of interaction with the enzyme and may make them less prone than other direct sGC agonists to induce characteristic hypotension in vivo.


Subject(s)
Endothelial Cells , Guanylate Cyclase , Humans , Endothelial Cells/metabolism , Enzyme Activation , Guanylate Cyclase/metabolism , Heme , Nitric Oxide/metabolism , Soluble Guanylyl Cyclase/metabolism , Vasodilator Agents , Alkylation
2.
Proc Natl Acad Sci U S A ; 114(15): 3999-4004, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28348207

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.


Subject(s)
Antiparkinson Agents/pharmacology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Parkinson Disease/drug therapy , Retinoid X Receptor alpha/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacokinetics , Brain/drug effects , Cell Line , Disease Models, Animal , Dopamine/genetics , Drug Stability , Humans , Male , Mice, Inbred BALB C , Molecular Targeted Therapy , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Nuclear Receptor Subfamily 4, Group A, Member 2/agonists , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Multimerization , Rats , Retinoid X Receptor alpha/agonists , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/genetics
3.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L662-L672, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30091379

ABSTRACT

Electronic cigarettes (e-cigs) are advertised as a less harmful nicotine delivery system or as a new smoking cessation tool. We aimed to assess the in vivo effects of e-cig vapor in the lung and to compare them to those of cigarette smoke (CS). We exposed C57BL/6 mice for either 3 days or 4 wk to ambient air, CS, or e-cig vapor containing 1) propylene glycol/vegetable glycerol (PG:VG-Sol; 1:1), 2) PG:VG with nicotine (G:VG-N), or 3) PG:VG with nicotine and flavor (PG:VG-N+F) and determined oxidative stress, inflammation, and pulmonary mechanics. E-cig vapors, especially PG:VG-N+F, increased bronchoalveolar lavage fluid (BALF) cellularity, Muc5ac production, as well as BALF and lung oxidative stress markers at least comparably and in many cases more than CS. BALF protein content at both time points studied was only elevated in the PG:VG-N+F group. After 3 days, PG:VG-Sol altered tissue elasticity, static compliance, and airway resistance, whereas after 4 wk CS was the only treatment adversely affecting these parameters. Airway hyperresponsiveness in response to methacholine was increased similarly in the CS and PG:VG-N+F groups. Our findings suggest that exposure to e-cig vapor can trigger inflammatory responses and adversely affect respiratory system mechanics. In many cases, the added flavor in e-cigs exacerbated the detrimental effects of e-cig vapor. We conclude that both e-cig vaping and conventional cigarette smoking negatively impact lung biology.


Subject(s)
Electronic Nicotine Delivery Systems/methods , Inflammation/etiology , Oxidative Stress , Respiratory Hypersensitivity/etiology , Smoking/adverse effects , Vaping/adverse effects , Animals , Electronic Nicotine Delivery Systems/statistics & numerical data , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Respiratory Hypersensitivity/pathology
4.
Am J Respir Cell Mol Biol ; 52(6): 762-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25353067

ABSTRACT

Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.


Subject(s)
Guanylate Cyclase/metabolism , Lung Diseases, Obstructive/enzymology , Lung Injury/enzymology , Airway Resistance , Animals , Benzoates/pharmacology , Benzoates/therapeutic use , Cyclic GMP/metabolism , Drug Evaluation, Preclinical , Enzyme Activation , Guanylate Cyclase/antagonists & inhibitors , Lung Diseases, Obstructive/drug therapy , Lung Injury/drug therapy , Male , Mice, Inbred C57BL
5.
J Pharmacol Exp Ther ; 354(1): 79-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25977483

ABSTRACT

Intense research is conducted to identify new molecular mechanisms of angiogenesis. Previous studies have shown that the angiogenic effects of hydrogen sulfide (H2S) depend on the activation of ATP-sensitive potassium channels (KATP) and that C-type natriuretic peptide (CNP), which can act through KATP, promotes endothelial cell growth. We therefore investigated whether direct KATP activation induces angiogenic responses and whether it is required for the endothelial responses to CNP or vascular endothelial growth factor (VEGF). Chick chorioallantoic membrane (CAM) angiogenesis was similarly enhanced by the direct KATP channel activator 2-nicotinamidoethyl acetate (SG-209) and by CNP or VEGF. The KATP inhibitors glibenclamide and 5-hydroxydecanoate (5-HD) reduced basal and abolished CNP-induced CAM angiogenesis. In vitro, the direct KATP openers nicorandil and SG-209 and the polypeptides VEGF and CNP increased proliferation and migration in bEnd.3 mouse endothelial cells. In addition, VEGF and CNP induced cord-like formation on Matrigel by human umbilical vein endothelial cells (HUVECs). All these in vitro endothelial responses were effectively abrogated by glibenclamide or 5-HD. In HUVECs, a small-interfering RNA-mediated decrease in the expression of the inwardly rectifying potassium channel (Kir) 6.1 subunit impaired cell migration and network morphogenesis in response to either SG-209 or CNP. We conclude that 1) direct pharmacologic activation of KATP induces angiogenic effects in vitro and in vivo, 2) angiogenic responses to CNP and VEGF depend on KATP activation and require the expression of the Kir6.1 KATP subunit, and 3) KATP activation may underpin angiogenesis to a variety of vasoactive stimuli, including H2S, VEGF, and CNP.


Subject(s)
Chorioallantoic Membrane/blood supply , KATP Channels/metabolism , Neovascularization, Physiologic , Animals , Cell Line , Cell Movement , Cell Proliferation , Chick Embryo , Chorioallantoic Membrane/metabolism , Collagen , Drug Combinations , Endothelial Cells/cytology , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Humans , KATP Channels/genetics , Laminin , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Proteoglycans , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics
6.
Nitric Oxide ; 46: 7-13, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25553675

ABSTRACT

The importance of hydrogen sulfide (H2S) in physiology and disease is being increasingly recognized in recent years. Unlike nitric oxide (NO) that signals mainly through soluble guanyl cyclase (sGC)/cGMP, H2S is more promiscuous, affecting multiple pathways. It interacts with ion channels, enzymes, transcription factors and receptors. It was originally reported that H2S does not alter the levels of cyclic nucleotides. More recent publications, however, have shown increases in intracellular cGMP following exposure of cells or tissues to exogenously administered or endogenously produced H2S. Herein, we discuss the evidence for the participation of cGMP in H2S signaling and reconcile the seemingly divergent results presented in the literature on the role of this cyclic nucleotide in the biological actions of H2S.


Subject(s)
Cyclic GMP/metabolism , Hydrogen Sulfide/metabolism , Signal Transduction , Animals , Cyclic GMP/chemistry , Humans , Hydrogen Sulfide/chemistry , Mice
7.
Br J Pharmacol ; 181(11): 1553-1575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519837

ABSTRACT

In 2023, seventy novel drugs received market authorization for the first time in either Europe (by the EMA and the MHRA) or in the United States (by the FDA). Confirming a steady recent trend, more than half of these drugs target rare diseases or intractable forms of cancer. Thirty drugs are categorized as "first-in-class" (FIC), illustrating the quality of research and innovation that drives new chemical entity discovery and development. We succinctly describe the mechanism of action of most of these FIC drugs and discuss the therapeutic areas covered, as well as the chemical category to which these drugs belong. The 2023 novel drug list also demonstrates an unabated emphasis on polypeptides (recombinant proteins and antibodies), Advanced Therapy Medicinal Products (gene and cell therapies) and RNA therapeutics, including the first-ever approval of a CRISPR-Cas9-based gene-editing cell therapy.


Subject(s)
Drug Approval , United States Food and Drug Administration , Humans , Europe , United States
8.
J Pharmacol Exp Ther ; 343(2): 278-87, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22859861

ABSTRACT

Levels of circulating angiopoietin-2 (Ang-2) increase in sepsis, raising the possibility that Ang-2 acts as a modulator in the sepsis cascade. To investigate this, experimental sepsis was induced in male C57BL6 mice by a multidrug-resistant isolate of Pseudomonas aeruginosa; survival was determined along with neutrophil tissue infiltration and release of proinflammatory cytokines. Survival was significantly increased either by pretreatment with recombinant Ang-2 2 h before or treatment with recombinant Ang-2 30 min after bacterial challenge. Likewise, Ang-2 pretreatment protected against sepsis-related death elicited by Escherichia coli; however, Ang-2 failed to provide protection in lipopolysaccharide (LPS)-challenged mice. The survival advantage of Ang-2 in response to P. aeruginosa challenge was lost in tumor necrosis factor (TNF)-deficient mice or neutropenic mice. Infiltration of the liver by neutrophils was elevated in the Ang-2 group compared with saline-treated animals. Serum TNF-α levels were reduced by Ang-2, whereas those of interleukin (IL)-6 and IL-10 remained unchanged. This was accompanied by lower release of TNF-α by stimulated splenocytes. When applied to U937 cells in vitro, heat-killed P. aeruginosa induced the secretion of IL-6 and TNF-α; low levels of exogenous TNF-α synergized with P. aeruginosa. This synergistic effect was abolished after the addition of Ang-2. These results put in evidence a striking protective role of Ang-2 in experimental sepsis evoked by a multidrug-resistant isolate of P. aeruginosa attributed to modulation of TNF-α production and changes in neutrophil migration. The protective role of Ang-2 is shown when whole microorganisms are used and not LPS, suggesting complex interactions with the host immune response.


Subject(s)
Angiopoietin-2/therapeutic use , Enzyme Inhibitors/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Sepsis/drug therapy , Animals , Apoptosis/drug effects , Capillary Permeability/drug effects , Cell Count , Colony-Forming Units Assay , Cytokines/biosynthesis , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/drug effects , Peritoneal Cavity/cytology , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/pathogenicity , Sepsis/microbiology , Sepsis/pathology , Spleen/cytology , Spleen/metabolism , Survival Analysis , Tumor Necrosis Factor-alpha/genetics , U937 Cells
9.
Bioorg Med Chem ; 20(8): 2675-8, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22436388

ABSTRACT

Thioglycine and l-thiovaline are stable under acidic and basic conditions but in the presence of bicarbonate they liberate the gasotransmitter H(2)S. In cells both thioamino acids were proven to enhance cGMP formation and promote vasorelaxation in mouse aortic rings. Given that H(2)S is known to lower arterial hypertension, reduce oxidative stress and exhibit cardioprotective effects in preclinical models, H(2)S donors hold promise as novel treatments for cardiovascular diseases.


Subject(s)
Amino Acids/pharmacology , Aorta/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Hydrogen Sulfide/metabolism , Myocytes, Smooth Muscle/drug effects , Valine/analogs & derivatives , Valine/pharmacology , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Aorta/metabolism , Cyclic GMP/biosynthesis , Cyclic GMP/metabolism , Hydrogen Sulfide/chemistry , Mice , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Rats
10.
Front Cell Dev Biol ; 10: 925457, 2022.
Article in English | MEDLINE | ID: mdl-35784456

ABSTRACT

Soluble guanylate cyclase (sGC) is the main receptor of nitric oxide (NO) and by converting GTP to cGMP regulates numerous biological processes. The ß1 subunit of the most abundant, α1ß1 heterodimer, harbors an N-terminal domain called H-NOX, responsible for heme and NO binding and thus sGC activation. Dysfunction of the NO/sGC/cGMP axis is causally associated with pathological states such as heart failure and pulmonary hypertension. Enhancement of sGC enzymatic function can be effected by a class of drugs called sGC "stimulators," which depend on reduced heme and synergize with low NO concentrations. Until recently, our knowledge about the binding mode of stimulators relied on low resolution cryo-EM structures of human sGC in complex with known stimulators, while information about the mode of synergy with NO is still limited. Herein, we couple NMR spectroscopy using the H-NOX domain of the Nostoc sp. cyanobacterium with cGMP determinations in aortic smooth muscle cells (A7r5) to study the impact of the redox state of the heme on the binding of the sGC stimulator BAY 41-2272 to the Ns H-NOX domain and on the catalytic function of the sGC. BAY 41-2272 binds on the surface of H-NOX with low affinity and this binding is enhanced by low NO concentrations. Subsequent titration of the heme oxidant ODQ, fails to modify the conformation of H-NOX or elicit loss of the heme, despite its oxidation. Treatment of A7r5 cells with ODQ following the addition of BAY 41-2272 and an NO donor can still inhibit cGMP synthesis. Overall, we describe an analysis in real time of the interaction of the sGC stimulator, BAY 41-2272, with the Ns H-NOX, map the amino acids that mediate this interaction and provide evidence to explain the characteristic synergy of BAY 41-2272 with NO. We also propose that ODQ can still oxidize the heme in the H-NOX/NO complex and inhibit sGC activity, even though the heme remains associated with H-NOX. These data provide a more-in-depth understanding of the molecular mode of action of sGC stimulators and can lead to an optimized design and development of novel sGC agonists.

11.
Heliyon ; 8(11): e11438, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36387474

ABSTRACT

Herein, we present the structure-based design, synthesis and biological evaluation of novel mono- and di-carboxylic 3,4-dihydroquinoxalin-2(1H)-one derivatives as potential heme-independent activators of soluble guanylate cyclase (sGC). Docking calculations of several known sGC agonists by utilizing both a homology model of human sGC ß1 Η-ΝΟΧ domain and a recent cryo-EM structure of the same domain guided the structural optimization of various designed compounds. Among these, mono- and di-carboxylic 3,4-dihydroquinoxalin-2(1H)-one derivatives arose as promising candidate sGC activators. A series of such compounds was synthesized and assessed for their effect on sGC activity. None of them was able to trigger any detectable activation of native sGC in prostate cancer (LnCaP) or rat aortic smooth muscle (A7r5) cells, even after loss of heme by treatment with the heme oxidant ODQ. Furthermore, selected derivatives did not exhibit any antagonistic effect against the known heme-independent sGC activator BAY 60-2770 nor any additive or synergistic effect with the heme-dependent NO donor sodium nitroprusside (SNP) on heme-associated sGC in A7r5 cells. However, when tested in vitro using purified recombinant sGC enzyme, the dicarboxylic 3,4-dihydroquinoxalin-2(1H)-one derivative 30d was able to increase the enzymatic activity of both the wild-type α1/ß1 sGC dimer (by 4.4-fold, EC50 = 0.77 µΜ) as well as the heme-free α1/ß1 His105Ala mutant sGC (by 4.8-fold, EC50 = 1.8 µΜ). Notably, the activity of compound 30d towards the mutant α1/ß1 Η105A enzyme was comparable with that previously reported by us for the bona fide activator BAY 60-2770, using the functionally equivalent wild-type sGC preparation treated with ODQ. These results indicate that compound 30d can indeed act as a promising sGC activator and may serve as a basic structure in the design of novel, optimized analogues with enhanced sGC agonistic activity and improved efficiency in cell-based and in vivo systems.

12.
Curr Res Struct Biol ; 3: 324-336, 2021.
Article in English | MEDLINE | ID: mdl-34901882

ABSTRACT

The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO's main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an α1 and a ß1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation. As a central player in this axis, sGC is the focus of intense research efforts aiming to develop therapeutic molecules that enhance its activity. A class of drugs named sGC "activators" aim to replace the oxidized heme of the H-NOX domain, thus stabilizing the enzyme and restoring its activity. Although numerous studies outline the pharmacology and binding behavior of these compounds, the static 3D models available so far do not allow a satisfactory understanding of the structural basis of sGC's activation mechanism by these drugs. Herein, application NMR describes different conformational states during the replacement of the heme by a sGC activators. We show that the two sGC activators (BAY 58-2667 and BAY 60-2770) significantly decrease the conformational plasticity of the recombinant H-NOX protein domain of Nostoc sp. cyanobacterium, rendering it a lot more rigid compared to the heme-occupied H-NOX. NMR methodology also reveals, for the first time, a surprising bi-directional competition between reduced heme and these compounds, pointing to a highly dynamic regulation of the H-NOX domain. This competitive, bi-directional mode of interaction is also confirmed by monitoring cGMP generation in A7r5 vascular smooth muscle cells by these activators. We show that, surprisingly, heme's redox state impacts differently the bioactivity of these two structurally similar compounds. In all, by NMR-based and functional approaches we contribute unique experimental insight into the dynamic interaction of sGC activators with the H-NOX domain and its dependence on the heme redox status, with the ultimate goal to permit a better design of such therapeutically important molecules.

13.
Toxics ; 8(1)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033401

ABSTRACT

Cigarette smoking (CS) causes significant morbidity worldwide, attributed to the numerous toxicants generated by tobacco combustion. Electronic cigarettes (ECIG) and heated tobacco products (HTP) are considered alternative smoking/vaping products that deliver nicotine through an inhaled aerosol and emit fewer harmful constituents than CS. However, their long-term impacts on human health are not well established. Nicotine exposure has been linked to lipolysis and body weight loss, while smoking has been associated with insulin resistance and hyperinsulinemia. Enhanced function of beige (thermogenic) adipocytes has been proposed as a means to reduce obesity and metabolic disorders. In this study, we compared the effect of extract-enriched media via exposure of culture medium to CS, HTP aerosol, and ECIG aerosol on the viability and the differentiation of 3T3-L1 pre-adipocytes to beige adipocytes. Only CS extract caused a decrease in cell viability in a dose- and time-dependent manner. Furthermore, relative lipid accumulation and expression levels of the adipocyte markers Pgc-1α, Ppar-γ and Resistin were significantly decreased in cells exposed to CS extract. Our results demonstrate that CS extract, in contrast to HTP and ECIG extracts, significantly impairs differentiation of pre-adipocytes to beige adipocytes and may therefore impact significantly adipose tissue metabolic function.

14.
Curr Med Chem ; 26(15): 2730-2747, 2019.
Article in English | MEDLINE | ID: mdl-30621555

ABSTRACT

The soluble guanylate cyclase (sGC) is the physiological sensor for nitric oxide and alterations of its function are actively implicated in a wide variety of pathophysiological conditions. Intense research efforts over the past 20 years have provided significant information on its regulation, culminating in the rational development of approved drugs or investigational lead molecules, which target and interact with sGC through novel mechanisms. However, there are numerous questions that remain unanswered. Ongoing investigations, with the critical aid of structural chemistry studies, try to further elucidate the enzyme's structural characteristics that define the association of "stimulators" or "activators" of sGC in the presence or absence of the heme moiety, respectively, as well as the precise conformational attributes that will allow the design of more innovative and effective drugs. This review relates the progress achieved, particularly in the past 10 years, in understanding the function of this enzyme, and focusses on a) the rationale and results of its therapeutic targeting in disease situations, depending on the state of enzyme (oxidized or not, heme-carrying or not) and b) the most recent structural studies, which should permit improved design of future therapeutic molecules that aim to directly upregulate the activity of sGC.


Subject(s)
Enzyme Activators/therapeutic use , Soluble Guanylyl Cyclase/metabolism , Animals , Cardiovascular Diseases/drug therapy , Cyclic GMP/metabolism , Enzyme Activators/pharmacology , Humans , Kidney Diseases/drug therapy , Nitric Oxide/metabolism , Protein Domains , Signal Transduction/drug effects , Soluble Guanylyl Cyclase/chemistry , Soluble Guanylyl Cyclase/physiology
15.
Biomol NMR Assign ; 10(2): 395-400, 2016 10.
Article in English | MEDLINE | ID: mdl-27614467

ABSTRACT

The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.


Subject(s)
Heme/metabolism , Nitric Oxide/metabolism , Nostoc/enzymology , Nuclear Magnetic Resonance, Biomolecular , Oxygen/metabolism , Soluble Guanylyl Cyclase/chemistry , Amino Acid Sequence , Protein Domains , Soluble Guanylyl Cyclase/metabolism
16.
Br J Pharmacol ; 172(6): 1397-414, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25302549

ABSTRACT

The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.


Subject(s)
Cardiovascular System/metabolism , Cyclic GMP/metabolism , Nitric Oxide/metabolism , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Cardiovascular System/physiopathology , Drug Design , Guanylate Cyclase/metabolism , Humans , Molecular Targeted Therapy , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/physiology , Soluble Guanylyl Cyclase
17.
Open Biol ; 4(7)2014 Jul.
Article in English | MEDLINE | ID: mdl-25030607

ABSTRACT

In the post-genomic era, the rapid evolution of high-throughput genotyping technologies and the increased pace of production of genetic research data are continually prompting the development of appropriate informatics tools, systems and databases as we attempt to cope with the flood of incoming genetic information. Alongside new technologies that serve to enhance data connectivity, emerging information systems should contribute to the creation of a powerful knowledge environment for genotype-to-phenotype information in the context of translational medicine. In the area of pharmacogenomics and personalized medicine, it has become evident that database applications providing important information on the occurrence and consequences of gene variants involved in pharmacokinetics, pharmacodynamics, drug efficacy and drug toxicity will become an integral tool for researchers and medical practitioners alike. At the same time, two fundamental issues are inextricably linked to current developments, namely data sharing and data protection. Here, we discuss high-throughput and next-generation sequencing technology and its impact on pharmacogenomics research. In addition, we present advances and challenges in the field of pharmacogenomics information systems which have in turn triggered the development of an integrated electronic 'pharmacogenomics assistant'. The system is designed to provide personalized drug recommendations based on linked genotype-to-phenotype pharmacogenomics data, as well as to support biomedical researchers in the identification of pharmacogenomics-related gene variants. The provisioned services are tuned in the framework of a single-access pharmacogenomics portal.


Subject(s)
Genomics/methods , Pharmacogenetics/methods , Genome , High-Throughput Nucleotide Sequencing/methods , Humans , Precision Medicine/methods
18.
Per Med ; 9(2): 201-210, 2012 Mar.
Article in English | MEDLINE | ID: mdl-29758826

ABSTRACT

AIM: The aim of this study was to understand the general public's and healthcare professionals' views on nutrigenomics. PATIENTS & METHODS: We designed a cross-sectional survey of healthcare professionals (n = 87) and the general public (n = 1504) in the three largest cities in Greece (Athens, Thessaloniki and Patras). RESULTS: Our data revealed that only 11.5% of respondents from the general public had been advised to take a genetic test in order to explore the relationship between their genes and their nutritional status. Although 80.5% of healthcare professionals would have been willing to recommend their patients/clients to undergo nutrigenomic analysis to correlate their genetic profile with their diet, only 17.2% of respondents had actually done so. In general, the general public was opposed to direct-access nutrigenomics testing. CONCLUSION: The application of genomic information in the context of nutritional choice requires the continuing education of healthcare professionals and the dissemination of accurate and reliable information to the general public.

19.
Am J Physiol Heart Circ Physiol ; 296(2): H442-52, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19028801

ABSTRACT

Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lymphokines/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Platelet-Derived Growth Factor/metabolism , Actins/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/physiopathology , Calcium-Binding Proteins/metabolism , Cells, Cultured , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Genes, Reporter , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Lymphokines/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Myosin Heavy Chains/metabolism , Phenotype , Phosphorylation , Platelet-Derived Growth Factor/genetics , Promoter Regions, Genetic , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rats , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Recombinant Proteins/metabolism , Regional Blood Flow , Stress, Mechanical , Time Factors , Up-Regulation , ets-Domain Protein Elk-1/metabolism , Calponins
20.
Cytokine ; 26(6): 262-72, 2004 Jun 21.
Article in English | MEDLINE | ID: mdl-15183844

ABSTRACT

As a member of the TGF-beta superfamily, myostatin is a specific negative regulator of skeletal muscle mass. To identify the downstream components in the myostatin signal transduction pathway, we used a luciferase reporter assay to elucidate myostatin-induced activity. The myostatin-induced transcription requires the participation of regulatory Smads (Smad2/3) and Co-Smads (Smad4). Conversely, inhibitory Smad7, but not Smad6, dramatically reduces the myostatin-induced transcription. This Smad7 inhibition is enhanced by co-expression of Smurf1. We have also shown that Smad7 expression is stimulated by myostatin via the interaction between Smad2, Smad3, Smad4 and the SBE (Smad binding element) in the Smad7 promoter. These results suggest that the myostatin signal transduction pathway is regulated by Smad7 through a negative feedback mechanism.


Subject(s)
Feedback, Physiological , Signal Transduction , Transforming Growth Factor beta/pharmacology , Base Sequence , Cell Line, Tumor , DNA/metabolism , Gene Expression Regulation, Neoplastic , Genes, Reporter/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , Mutation/genetics , Myostatin , Promoter Regions, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL