Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Biochem Funct ; 42(3): e4010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613217

ABSTRACT

Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-ß1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-ß1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-ß1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-ß1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-ß1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-ß1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-ß1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.


Subject(s)
Mesenchymal Stem Cells , Uterine Cervical Neoplasms , Female , Humans , B7-H1 Antigen , Adenosine/pharmacology , Transforming Growth Factor beta1 , Tumor Microenvironment
2.
Cytokine ; 130: 155082, 2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32259773

ABSTRACT

Cervical cancer (CeCa) produces large amounts of IL-10, which downregulates the major histocompatibility complex class I molecules (HLA-I) in cancer cells and inhibits the immune response mediated by cytotoxic T lymphocytes (CTLs). In this study, we analyzed the ability of CeCa cells to produce IL-10 through the CD73-adenosine pathway and its effect on the downregulation of HLA-I molecules to evade CTL-mediated immune recognition. CeCa cells cultured in the presence of ≥10 µM AMP or adenosine produced 4.5-6 times as much IL-10 as unstimulated cells. The silencing of CD73 or the blocking of A2BR with the specific antagonist MRS1754 reversed this effect. In addition, IL-10 decreased the expression of HLA-I molecules, resulting in the protection of CeCa cells against the cytotoxic activity of CTLs. The addition of MRS1754 or anti-IL-10 reversed the decrease in HLA-I molecules and favored the cytotoxic activity of CTLs. These results strongly suggest the presence of a feedback loop encompassing the adenosinergic pathway, the production of IL-10, and the downregulation of HLA-I molecules in CeCa cells that favors immune evasion and thus tumor progression. This pathway may have clinical importance as a therapeutic target.

3.
Mediators Inflamm ; 2020: 1678780, 2020.
Article in English | MEDLINE | ID: mdl-33488292

ABSTRACT

Persistent infection with high-risk human papillomavirus (HR-HPV) is the main factor in the development of cervical cancer (CC). The presence of immunosuppressive factors plays an important role in the development of this type of cancer. To determine whether CD39 and CD73, which participate in the production of immunosuppressive adenosine (Ado), are involved in the progression of CC, we compared the concentrations and hydrolytic activity of these ectonucleotidases in platelet-free plasma (PFP) samples between patients with low-grade squamous intraepithelial lesions (LSILs) (n = 18), high-grade squamous intraepithelial lesions (HSILs) (n = 12), and CC (n = 19) and normal donors (NDs) (n = 15). The concentrations of CD39 and CD73 in PFP increased with disease progression (r = 0.5929, p < 0.001). The PFP of patients with HSILs or CC showed the highest concentrations of CD39 (2.3 and 2.2 times that of the NDs, respectively) and CD73 (1.7 and 2.68 times that of the NDs, respectively), which were associated with a high capacity to generate Ado from the hydrolysis of adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The addition of POM-1 and APCP, specific inhibitors of CD39 and CD73, respectively, inhibited the ADPase and AMPase activity of PFP by more than 90%. A high level of the 90 kD isoform of CD73 was detected in the PFP of patients with HSILs or CC. Digestion with endoglycosidase H and N-glycanase generated CD73 with weights of approximately 90 kD, 85 kD, 80 kD, and 70 kD. In addition, the levels of transforming grow factor-ß (TGF-ß) in the PFPs of patients with LSIL, HSIL and CC positively correlated with those of CD39 (r = 0.4432, p < 0.001) and CD73 (r = 0.5786, p < 0.001). These results suggest that persistent infection by HR-HPV and the concomitant production of TGF-ß promote the expression of CD39 and CD73 to favor CC progression through Ado generation.


Subject(s)
5'-Nucleotidase/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Uterine Cervical Neoplasms/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adult , Enzyme-Linked Immunosorbent Assay , Female , Humans
4.
Cytokine ; 118: 71-79, 2019 06.
Article in English | MEDLINE | ID: mdl-30301599

ABSTRACT

In cancer, the adenosinergic pathway participates in the generation of an immunosuppressive microenvironment and in the promotion of tumor growth through the generation of adenosine (Ado). The present study analyzed the participation of Ado, generated through the functional activity of the cervical cancer (CeCa) pathway in CeCa cells, to induce the expression and secretion of TGF-ß1, as well as the participation of this factor to maintain CD73 expression. Ado concentrations greater than 10 µM were necessary to induce an increase of over 50% in the production and expression of TGF-ß1 in CeCa tumor cells. Blockade of A2AR and A2BR with the specific antagonists, ZM241385 and MRS1754, respectively, strongly reversed the production of TGF-ß1. TGF-ß1 produced by CeCa cells was necessary to maintain CD73 expression because the addition of anti-TGF-ß neutralizing antibodies or the inhibition of TGF-ßRI strongly reversed the expression of CD73 in the CeCa cells. These results suggested a feedback loop in CeCa cells that favors immunosuppressive activity through the production of TGF-ß1 and Ado as well as the autocrine activity of TGF-ß1 and expression of CD73.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine/metabolism , Autocrine Communication/physiology , Transforming Growth Factor beta1/metabolism , Uterine Cervical Neoplasms/metabolism , Acetamides/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Cell Line, Tumor , Female , GPI-Linked Proteins/metabolism , HeLa Cells , Humans , Immunosuppression Therapy/methods , Purines/pharmacology , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2B/metabolism , Triazines/pharmacology , Triazoles/pharmacology , Tumor Microenvironment/drug effects , Uterine Cervical Neoplasms/drug therapy
6.
Stem Cells Dev ; 28(7): 477-488, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30696359

ABSTRACT

Mesenchymal stromal cells (MSCs) in the tumor microenvironment (TME) participate together with tumor cells to suppress antitumor effector cells through the production of immunosuppressive factors, such as transforming growth factor-beta 1 (TGF-ß1). Furthermore, TGF-ß1 can induce 5'-nucleotidase (CD73) expression in various cell types; this functional activity is associated with the production of adenosine (Ado), which is an immunosuppressive nucleoside. In this study, we provide evidence that coculture of MSCs derived from cervical tumors (CeCa-MSC) with CeCa tumor cells increases CD73 expression in tumor cells and the capacity of these cells to generate Ado in a MSC ratio-dependent manner. Interestingly, the increase in CD73 in the CeCa cell membrane corresponded to an increase in the TGF-ß1 expression level in the tumor cells and the TGF-ß1 content in the supernatants of the CeCa/CeCa-MSC cocultures. The addition of anti-hTGF-ß neutralizing antibodies strongly reversed CD73 expression in the tumor cells. This phenomenon was not exclusive to CeCa-MSCs; coculture of MSCs derived from the normal cervix with CeCa cells produced similar results. These results suggest that the interaction of MSCs with CeCa tumor cells in the TME may condition higher TGF-ß1 production to maintain an immunosuppressive status not only through the activity of this cytokine per se but also through its ability to induce CD73 expression in tumor cells and generate an immunosuppressive microenvironment rich in Ado.


Subject(s)
5'-Nucleotidase/biosynthesis , Cervix Uteri/metabolism , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells/metabolism , Neoplasm Proteins/biosynthesis , Transforming Growth Factor beta1/biosynthesis , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , Cervix Uteri/pathology , Female , GPI-Linked Proteins/biosynthesis , Humans , Mesenchymal Stem Cells/pathology , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL