Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Chem Sci ; 11(40): 11072-11080, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-34123198

ABSTRACT

The formation of hierarchical nanostructures using preformed dumbbell-like species made of covalent organic-inorganic polyoxometalate (POM)-based hybrids is herein described. In this system, the presence of charged subunits (POM, metal linkers, and counter ions) in the complex molecular architecture can drive their aggregation, which results from a competition between the solvation energy of the discrete species and intermolecular electrostatic interactions. We show that the nature of the POM and the charge of the metal linker are key parameters for the hierarchical nanoorganization. The experimental findings were corroborated with a computational investigation combining DFT and molecular dynamics simulation methods, which outlines the importance of solvation of the counter ion and POM/counter ion association in the aggregation process. The dumbbell-like species can also form gels, in the presence of a poorer solvent, displaying similar nanoorganization of the aggregates. We show that starting from the designed molecular building units whose internal charges can be controlled by redox trigger we can achieve their implementation into soft nanostructured materials through the control of their supramolecular organization.

2.
J Am Chem Soc ; 131(36): 12864-5, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-19462948

ABSTRACT

We show by means of STM that C(60) molecules can be trapped into specific sites of a 2D double-cavity open network, thus forming long-range alignments of single molecules. Since only one of the two cavities has the right size to host C(60), the smallest cavity remains empty and is thus available to trap additional species of smaller size. This novel 2D supramolecular network opens new perspectives in the design of multicomponent guest-host architectures with electronic functionalities.

3.
ACS Appl Mater Interfaces ; 9(36): 30992-31004, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28805058

ABSTRACT

2,2',6,6'-Tetraphenyl-4,4'-dipyranylidene (DIPO-Ph4) was grown by vacuum deposition on an indium tin oxide (ITO) substrate. The films were characterized by atomic force microscopy as well as synchrotron radiation UV and X-ray photoelectron spectroscopy to gain an insight into the material growth and to better understand the electronic properties of the ITO/DIPO-Ph4 interface. To interpret our spectroscopic data, we consider the formation of cationic DIPO-Ph4 at the ITO interface owing to a charge transfer from the organic layer to the substrate. Ionization energy DFT calculations of the neutral and cationic species substantiate this hypothesis. Finally, we present the energetic diagram of the ITO/DIPO-Ph4 system, and we discuss the application of this interface in various technologically relevant systems, as a hole-injector in OLEDs or as a hole-collector interfacial layer adjacent to the prototypical OPV layer P3HT:PCBM.

4.
Nat Commun ; 7: 13646, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929089

ABSTRACT

A challenge in molecular spintronics is to control the magnetic coupling between magnetic molecules and magnetic electrodes to build efficient devices. Here we show that the nature of the magnetic ion of anchored metal complexes highly impacts the exchange coupling of the molecules with magnetic substrates. Surface anchoring alters the magnetic anisotropy of the cobalt(II)-containing complex (Co(Pyipa)2), and results in blocking of its magnetization due to the presence of a magnetic hysteresis loop. In contrast, no hysteresis loop is observed in the isostructural nickel(II)-containing complex (Ni(Pyipa)2). Through XMCD experiments and theoretical calculations we find that Co(Pyipa)2 is strongly ferromagnetically coupled to the surface, while Ni(Pyipa)2 is either not coupled or weakly antiferromagnetically coupled to the substrate. These results highlight the importance of the synergistic effect that the electronic structure of a metal ion and the organic ligands has on the exchange interaction and anisotropy occurring at the molecule-electrode interface.

5.
Chem Commun (Camb) ; 50(63): 8663-6, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24942914

ABSTRACT

We describe an efficient synthetic route toward novel organocobalt complexes [(η(4)-C4(nT)4)Co(η(5)-C5H5)] with n = 1, 2, 3 thiophene rings. Solution-processed bulk heterojunctions solar cells based on CpCoCb(3T)4:PCBM blends achieve power conversion efficiencies of up to 2.1%.

6.
Chem Commun (Camb) ; 47(36): 10091-3, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21829849

ABSTRACT

Two star-shaped triazatrinaphthylene (TrisK) derivatives form highly-organized nanoporous honeycomb networks when adsorbed at the n-tetradecane/HOPG interface. STM reveals that replacing three H-atoms by three Cl-atoms in the chemical structure of the TrisK skeleton results in locking the free-rotation of the guest molecules inside the pore of the host network as a result of symmetry breaking.

7.
ACS Appl Mater Interfaces ; 2(11): 3059-68, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21028838

ABSTRACT

One inherent limitation to the efficiency of photovoltaic solar cells based on polymer/fullerene bulk heterojunctions (BHJs) is the accumulation of positive charges at the anodic interface. The unsymmetrical charge collection of holes and electrons dramatically decreases the short-circuit current. Interfacial layers (IFLs) such as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) have no effect on the unbalanced electron/hole transport across the BHJ. We report here on the use of dithiapyrannylidenes (DITPY), a new class of planar quinoid compounds, as efficient hole-transporting/electron-blocking layers in organic solar cells based on poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) BHJs. Inserting a 15-nm-thick IFL of 4,4'-bis(diphenyl-2,6-thiapyrannylidene) (DITPY-Ph(4)) between the indium-tin oxide electrode and the P3HT:PCBM BHJ prevents detrimental space-charge effects and favors recombination-limited currents. Current-sensing atomic force microscopy reveals a drastic increase of the hole-carrying pathways in DITPY-Ph(4) compared to PEDOT:PSS. In ambient conditions, photovoltaic cells using DITPY-Ph(4) exhibit an 8% increase in the current density, although the conversion efficiency remains slightly lower compared to PEDOT:PSS-based devices. Finally, we present a detailed analysis of the photocurrent generation, showing that DITPY-Ph(4) IFLs induce a transition from unproductive space-charge-limited currents to recombination-limited currents.

8.
ACS Nano ; 4(3): 1288-92, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20155970

ABSTRACT

The two-dimensional (2D) crystal engineering of molecular architectures on surfaces requires controlling various parameters related respectively to the substrate, the chemical structure of the molecules, and the environmental conditions. We investigate here the influence of temperature on the self-assembly of hexakis(n-dodecyl)-peri-hexabenzocoronene (HBC-C(12)) adsorbed on gold using scanning tunneling microscopy (STM) at the liquid/solid interface. We show that the packing density of 2D self-assembled HBC-C(12) can be precisely tuned by adjusting the substrate temperature. Increasing the temperature progressively over the 20-50 degrees C range induces three irreversible phase transitions and a 3-fold increase of the packing density from 0.111 to 0.356 molecule/nm(2). High-resolution STM images reveal that this 2D packing density increase arises from the stepwise desorption of the n-dodecyl chains from the gold surface. Such temperature-controlled irreversible phase transitions are thus a versatile tool that can then be used to adjust the packing density of highly ordered functional materials in view of applications in organic electronic devices.

9.
Eur Biophys J ; 31(3): 185-97, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12029331

ABSTRACT

Amphiphilic and hydrophobic peptides play a key role in many biological processes. We have developed a reference system for evaluating the insertion of such peptides bearing Trp fluorescent reporter groups into membrane mimetic systems. This system involves a set of six 25-amino acid synthetic peptides that are models of transmembrane alpha-helices. They are Lys-flanked polyLeu sequences, each containing a single Trp residue at a different position (P i, with i=3, 5, 7, 9, 11 and 13). These peptides were inserted into micelles of a non-ionic detergent, dodecylmaltoside (DM). We analyzed this system by use of circular dichroism and steady-state and time-resolved fluorescence in combination with Trp quenching with two brominated DM analogs. We found significant variations in the Trp emission maximum according to its position in each peptide (from 327 to 313 nm). This is consistent with the radial insertion of the peptides within DM micelles. We observed characteristic patterns of fluorescence quenching of these peptides in mixed micelles of DM, with either 7,8-dibromododecylmaltoside (BrDM) or 10,11-dibromoundecanoylmaltoside (BrUM), that reflect differences in the accessibility of the Trp residue to the bromine atoms located on the detergent acyl chain. In the isotropic reference solvent, methanol, the alpha-helix content was high and identical (approximately 76%) for all peptides. In DM micelles, the alpha-helix content for P9 to P13 was similar to that in methanol, but slightly lower for P3 to P7. The fluorescence intensity decays were heterogeneous and depended upon the position of the Trp. The Trp dynamics of each peptide are described by sub-nanosecond and nanosecond rotational motions that were significantly lower than those observed in methanol. These results, which precisely describe structural, dynamic and microenvironment parameters of peptide Trp in micelles according to its depth, should be useful for describing the interactions of peptides of biological interest with micelles.


Subject(s)
Glucosides/chemistry , Membrane Proteins/chemistry , Membranes, Artificial , Micelles , Protein Structure, Secondary , Tryptophan/chemistry , Anisotropy , Biomimetics/methods , Circular Dichroism/methods , Methanol/chemistry , Sensitivity and Specificity , Spectrometry, Fluorescence/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL