Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
RSC Med Chem ; 15(3): 1066-1071, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516600

ABSTRACT

We have developed a novel chemical handle (PFI-E3H1) and a chemical probe (PFI-7) as ligands for the Gid4 subunit of the human E3 ligase CTLH degradation complex. Through an efficient initial hit-ID campaign, structure-based drug design (SBDD) and leveraging the sizeable Pfizer compound library, we identified a 500 nM ligand for this E3 ligase through file screening alone. Further exploration identified a vector that is tolerant to addition of a linker for future chimeric molecule design. The chemotype was subsequently optimized to sub-100 nM Gid4 binding affinity for a chemical probe. These novel tools, alongside the suitable negative control also identified, should enable the interrogation of this complex human E3 ligase macromolecular assembly.

2.
J Med Chem ; 67(12): 10248-10262, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38848667

ABSTRACT

Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 (22) for the treatment of Alzheimer's disease. A key component of the design involved a 2,5-cis-tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work. PF-06648671 achieved excellent alignment of whole cell in vitro potency (Aß42 IC50 = 9.8 nM) and absorption, distribution, metabolism, and excretion (ADME) parameters. This resulted in favorable in vivo pharmacokinetic (PK) profile in preclinical species, and PF-06648671 achieved a human PK profile suitable for once-a-day dosing. Furthermore, PF-06648671 was found to have favorable brain availability in rodent, which translated into excellent central exposure in human and robust reduction of amyloid ß (Aß) 42 in cerebrospinal fluid (CSF).


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/drug therapy , Humans , Animals , Amyloid beta-Peptides/metabolism , Rats , Structure-Activity Relationship , Mice , Male , Drug Discovery , Furans/pharmacology , Furans/pharmacokinetics , Furans/chemical synthesis , Furans/chemistry , Furans/therapeutic use , Rats, Sprague-Dawley , Brain/metabolism
3.
J Org Chem ; 77(10): 4732-9, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22524537

ABSTRACT

(S)-3-(methylamino)-3-((R)-pyrrolidin-3-yl)propanenitrile (1) is a key intermediate in the preparation of PF-00951966, (1) a fluoroquinolone antibiotic for use against key pathogens causing community-acquired respiratory tract infections including multidrug resistant (MDR) organisms. The current work describes the development of a highly efficient and stereoselective synthesis of 1 in 10 steps with an overall yield of 24% from readily available benzyloxyacetyl chloride. Two key transformations in the synthetic sequence involve (a) catalytic asymmetric hydrogenation with chiral DM-SEGPHOS-Ru(II) complex to afford ß-hydroxy amide 11b in good yield (73%) and high stereoselectivity (de 98%, ee >99%) after recrystallization and (b) S(N)2 substitution reaction with methylamine to provide diamine 14 with inversion of configuration at the 1'-position in high yield (80%), after efficient purification using a simple acid/base extraction protocol.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Nitriles/chemistry , Nitriles/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/chemical synthesis , Catalysis , Molecular Structure , Stereoisomerism
4.
Bioorg Med Chem Lett ; 22(8): 2906-11, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22429469

ABSTRACT

We report the discovery and optimization of a novel series of dihydrobenzofuran amides as γ-secretase modulators (GSMs). Strategies for aligning in vitro potency with drug-like physicochemical properties and good microsomal stability while avoiding P-gp mediated efflux are discussed. Lead compounds such as 35 and 43 have moderate to good in vitro potency and excellent selectivity against Notch. Good oral bioavailability was achieved as well as robust brain Aß42 lowering activity at 100 mg/kg po dose.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Drug Design , Administration, Oral , Amides/chemistry , Animals , Benzofurans/chemical synthesis , Benzofurans/chemistry , Benzofurans/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guinea Pigs , Inhibitory Concentration 50 , Molecular Structure , Protein Binding , Rats
5.
Org Biomol Chem ; 7(24): 5063-6, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20024098

ABSTRACT

Cyclodehydration of amino acid-derived acyl hydrazide amides to the corresponding oxadiazoles was followed by a second dehydration event, smoothly furnishing the novel imidazo[5,1-b][1,3,4]oxadiazole motif .


Subject(s)
Oxadiazoles/chemical synthesis , Amides/chemistry , Amino Acids/chemistry
7.
J Med Chem ; 61(8): 3626-3640, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29601185

ABSTRACT

In this report, we describe a method whereby lead molecules can be converted into several new analogues each using liver microsomes. Less than one micromole of substrate is incubated with liver microsomes (mouse, rat, hamster, guinea pig, rabbit, dog, monkey, or human) to produce multiple products which are isolated and analyzed by quantitative cryomicroprobe NMR (qNMR) spectroscopy. The solutions from qNMR analysis were then used as stocks that were diluted into biochemical assays. Nine human phosphodiesterase-2 (PDE2) inhibitors yielded 36 new analogues. Products were tested for PDE2 inhibition, intrinsic clearance in human hepatocytes, and membrane permeability. Two of the products (2c and 4b) were 3-10× more potent than their respective parent compounds and also had improved metabolic stability. Others offered insights into structure-activity relationships. Overall, this process of using liver microsomes at a submicromole scale of substrate is a useful approach to rapid and cost-effective late-stage lead diversification.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Microsomes, Liver/metabolism , Phosphodiesterase Inhibitors/pharmacology , Animals , Cell Line , Cell Membrane Permeability , Cricetinae , Dogs , Female , Guinea Pigs , Hepatocytes/metabolism , Humans , Macaca fascicularis , Magnetic Resonance Spectroscopy , Male , Mice , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacokinetics , Rabbits , Rats , Structure-Activity Relationship
8.
ACS Med Chem Lett ; 9(2): 68-72, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29456790

ABSTRACT

Late-stage oxidation using liver microsomes was applied to phosphodiesterase 2 inhibitor 1 to reduce its clearance by cytochrome P450 enzymes, introduce renal clearance, and minimize the risk for victim drug-drug interactions. This approach yielded PF-06815189 (2) with improved physicochemical properties and a mixed metabolic profile. This example highlights the importance of C-H diversification methods to drug discovery.

9.
J Med Chem ; 49(22): 6435-8, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064062

ABSTRACT

The 3-aminoquinzolinediones represent a new series of antibacterial agents structurally related to the fluoroquinolones. They are inhibitors of bacterial gyrase and topoisomerase IV and demonstrate clinically useful antibacterial activity against fastidious Gram-negative and Gram-positive organisms, including multidrug- and fluoroquinolone-resistant organisms. These agents also demonstrate in vivo efficacy in murine systemic infection models.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Quinazolinones/chemical synthesis , DNA Topoisomerase IV/antagonists & inhibitors , Drug Resistance, Multiple, Bacterial/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Methicillin Resistance , Microbial Sensitivity Tests , Structure-Activity Relationship , Topoisomerase II Inhibitors
10.
J Med Chem ; 49(4): 1475-85, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480284

ABSTRACT

Structure-activity relationships for inhibition of erbB1, erbB2, and erbB4 were determined for a series of alkynamide analogues of quinazoline- and pyrido[3,4-d]pyrimidine-based compounds. The compounds were prepared by coupling the appropriate 6-aminoquinazolines or 6-aminopyrido[3,4-d]pyrimidines with alkynoic acids, using EDCI.HCl in pyridine. The compounds showed pan-erbB enzyme inhibition but were on average about 10-fold more potent against erbB1 than against erbB2 and erbB4. For cellular inhibition, the nature of the alkylating side chains was an important determinant, with 5-dialkylamino-2-pentynamide type Michael acceptors providing the highest potency. This is suggested to be due to an improved ability of the amine to participate in an autocatalysis of the Michael reaction with enzyme cysteine residues. Pyrido[3,4-d]pyrimidine analogue 39 was selected for in vivo evaluation and achieved tumor regressions at 10 mg/kg in the A431 human epidermoid carcinoma and at 40 mg/kg for the SF767 human glioblastoma and the SKOV3 human ovarian carcinoma. Complete stasis was observed at 40 mg/kg in the BXPC3 human pancreatic carcinoma as well as in the H125 human non-small-cell lung carcinoma.


Subject(s)
Alkynes/chemical synthesis , Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Pyrimidines/chemical synthesis , Quinazolines/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Alkynes/chemistry , Alkynes/pharmacology , Amides/chemistry , Amides/pharmacokinetics , Amides/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Dogs , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Haplorhini , Humans , Mice , Mice, Nude , Mice, SCID , Phosphorylation , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Rats , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Receptor, ErbB-4 , Structure-Activity Relationship , Xenograft Model Antitumor Assays
11.
ACS Med Chem Lett ; 6(5): 596-601, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005540

ABSTRACT

Herein we describe the design and synthesis of a series of pyridopyrazine-1,6-dione γ-secretase modulators (GSMs) for Alzheimer's disease (AD) that achieve good alignment of potency, metabolic stability, and low MDR efflux ratios, while also maintaining favorable physicochemical properties. Specifically, incorporation of fluorine enabled design of metabolically less liable lipophilic alkyl substituents to increase potency without compromising the sp(3)-character. The lead compound 21 (PF-06442609) displayed a favorable rodent pharmacokinetic profile, and robust reductions of brain Aß42 and Aß40 were observed in a guinea pig time-course experiment.

12.
J Med Chem ; 57(3): 1046-62, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24428186

ABSTRACT

Herein we describe the design and synthesis of a novel series of γ-secretase modulators (GSMs) that incorporates a pyridopiperazine-1,6-dione ring system. To align improved potency with favorable ADME and in vitro safety, we applied prospective physicochemical property-driven design coupled with parallel medicinal chemistry techniques to arrive at a novel series containing a conformationally restricted core. Lead compound 51 exhibited good in vitro potency and ADME, which translated into a favorable in vivo pharmacokinetic profile. Furthermore, robust reduction of brain Aß42 was observed in guinea pig at 30 mg/kg dosed orally. Through chemical biology efforts involving the design and synthesis of a clickable photoreactive probe, we demonstrated specific labeling of the presenilin N-terminal fragment (PS1-NTF) within the γ-secretase complex, thus gaining insight into the binding site of this series of GSMs.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Pyridazines/chemical synthesis , Pyridines/chemical synthesis , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/metabolism , Animals , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Drug Design , Guinea Pigs , HEK293 Cells , Humans , Peptide Fragments/metabolism , Presenilin-1/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship
13.
Org Lett ; 15(3): 642-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23330785

ABSTRACT

A facile one-pot synthesis of 3,4-dihydro-1H-pyrido[1,2-a]pyrazine-1,6(2H)-diones (pyridopyrazine-1,6-diones) has been developed which employs a sequential coupling/cyclization reaction of 6-hydroxypicolinic acids and ß-hydroxylamines. The transformation proceeds in good yield under mild conditions using O-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) to both carry out the amide formation and activate the hydroxyl group for intramolecular alkylation.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemical synthesis , Picolinic Acids/chemistry , Pyrazines/chemical synthesis , Pyridines/chemical synthesis , Catalysis , Combinatorial Chemistry Techniques , Cyclization , Heterocyclic Compounds, 2-Ring/chemistry , Molecular Structure , Pyrazines/chemistry , Pyridines/chemistry
14.
Expert Opin Ther Pat ; 21(2): 205-26, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21231889

ABSTRACT

INTRODUCTION: The amyloid precursor protein is first cleaved by ß-secretase to generate a 99-residue membrane-bound CTF (C99 or ß-CTF), which is subsequently cleaved by γ-secretase to generate amyloid ß (Aß) peptides and the APP intracellular domain. The amyloidogenic Aß42 has attracted considerable attention because it is thought to be the most pathogenic species associated with Alzheimer's disease progression. New classes of compounds, called γ-secretase modulators (GSMs), have been shown to selectively lower Aß42 production without shutting down key γ-secretase-dependent signaling pathways. This has become an important therapeutic strategy aimed at modulating Aß production. AREAS COVERED: The progress on the clinical development of γ-secretase inhibitors is briefly covered in this review, followed by a discussion of the potential differentiating attributes of GSMs. Then, the patent literature covering novel GSMs is reviewed, focusing on patents from 2008 to 2010. EXPERT OPINION: Much progress has been made in the past 2 years on developing GSMs with improved potency for lowering the production of Aß42. However, many of these chemotypes are in a challenging chemical space and generally possess higher lipophilicity than most CNS drugs. It will be important to gain a better understanding of the specific target(s) that these GSMs interact with in order to facilitate future drug design efforts.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/drug effects , Patents as Topic , Protease Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 17(5): 1312-20, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17196390

ABSTRACT

A series of 3-aminoquinazolinediones was synthesized and evaluated for its antibacterial and DNA gyrase activity. The SAR around the quinazolinedione core was explored and the optimal substitutions were combined to give two compounds, 2r and 2s, with exceptional enzyme potency (IC50 = 0.2 microM) and activity against gram-positive organisms (MIC's = 0.015-0.06 microg/mL).


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Topoisomerase II Inhibitors , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/chemistry , DNA Gyrase , Gram-Positive Bacteria/drug effects , Inhibitory Concentration 50 , Quinazolinones/chemistry , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 14(17): 4405-9, 2004 Sep 06.
Article in English | MEDLINE | ID: mdl-15357962

ABSTRACT

A series of 3-hydroxyquinazoline-2,4-diones was synthesized and evaluated for antibacterial activity. This series represents a novel addition to the DNA gyrase inhibitor class of antibacterials. Appropriate substitutions onto the core template yielded compounds with excellent potency against E. coli gyrase and significant in vitro Gram-negative and Gram-positive antibacterial activity.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Quinazolines/chemical synthesis , Hydroxyquinolines/chemical synthesis , Microbial Sensitivity Tests/statistics & numerical data , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL