ABSTRACT
Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity1. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively2,3. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity.
Subject(s)
Glutamic Acid , Glycine , Ion Channel Gating , Receptors, N-Methyl-D-Aspartate , Animals , Rats , Allosteric Regulation , Cryoelectron Microscopy , Glutamic Acid/metabolism , Glycine/metabolism , Ligands , Models, Molecular , Oocytes/metabolism , Protein Domains , Protein Multimerization , Protein Subunits/metabolism , Protein Subunits/chemistry , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/ultrastructure , Rotation , Xenopus laevisABSTRACT
Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.
Subject(s)
Glutamic Acid , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , Synaptic Transmission , Protein Subunits/metabolismABSTRACT
GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.
Subject(s)
Central Nervous System , Receptors, Glutamate , Humans , Central Nervous System/metabolism , Mutation , Protein Domains , Receptors, Glutamate/metabolismABSTRACT
Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.
Subject(s)
Nervous System Diseases , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Mutation, Missense/genetics , Nervous System Diseases/metabolism , Neurons/metabolism , Models, BiologicalABSTRACT
N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.
Subject(s)
Epilepsy , Receptors, N-Methyl-D-Aspartate , Child , Humans , Epilepsy/genetics , Mutation, Missense , Phenotype , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal TransductionABSTRACT
NMDA receptors (NMDARs) are ionotropic glutamate receptors that mediate a slow, Ca2+-permeable component of fast excitatory neurotransmission. Modulation of NMDAR function has the potential for disease modification as NMDAR dysfunction has been implicated in neurodevelopment, neuropsychiatric, neurological, and neurodegenerative disorders. We recently described the thieno[2,3-d]pyrimidin-4-one (EU1622) class of positive allosteric modulators, including several potent and efficacious analogs. Here we have used electrophysiological recordings from Xenopus oocytes, HEK cells, and cultured cerebellar and cortical neurons to determine the mechanisms of action of a representative member of this class of modulator. EU1622-240 enhances current response to saturating agonist (doubling response amplitude at 0.2-0.5 µM), slows the deactivation time course following rapid removal of glutamate, increases open probability, enhances co-agonist potency, and reduces single channel conductance. We also show that EU1622-240 can transform NMDARs so that they can be opened when only glutamate or glycine is bound. EU1622-240-bound NMDARs channels activated by a single agonist (glutamate or glycine) open to a unique conductance level with different pore properties and Mg2+ sensitivity, in contrast to channels arising from activation of NMDARs with both co-agonists bound. These data demonstrate that previously hypothesized distinct gating steps can be controlled by glutamate and glycine binding and shows that the 1622-series modulators enable glutamate- or glycine-bound NMDARs to generate open conformations with different pore properties. The properties of this class of allosteric modulators present intriguing therapeutic opportunities for the modulation of circuit function. Significance Statement NMDA receptors are expressed throughout the CNS and are permeable to calcium. EU1622-240 increases open probability and agonist potency, while reducing single channel conductance and prolonging the deactivation time course. EU1622-240 allows NMDA receptor activation by the binding of one co-agonist (glycine or glutamate), which produces channels with distinct properties. Evaluation of this modulator provides insight into gating mechanisms and may lead to the development of new therapeutic strategies.
ABSTRACT
Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.
Subject(s)
Astrocytes , CA1 Region, Hippocampal , Glutamic Acid , Mice, Inbred C57BL , Receptor, PAR-1 , Receptors, Metabotropic Glutamate , Synapses , Animals , Receptors, Metabotropic Glutamate/metabolism , Astrocytes/metabolism , Glutamic Acid/metabolism , Synapses/metabolism , CA1 Region, Hippocampal/metabolism , Receptor, PAR-1/metabolism , Mice , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Male , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Potassium Channels, Tandem Pore Domain/metabolismABSTRACT
NMDA-type glutamate receptors (NMDARs) play a crucial role in synaptogenesis, circuit development, and synaptic plasticity, serving as fundamental components in cellular models of learning and memory. Their dysregulation has been implicated in several neurological disorders and synaptopathies. NMDARs are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The composition of GluN2 subunits determines the main biophysical properties of the channel, such as calcium permeability and gating kinetics, and influences the ability of the receptor to interact with postsynaptic proteins involved in normal synaptic physiology and plasticity, including scaffolding proteins and signaling molecules. During early development, NMDARs in the forebrain contain solely the GluN2B subunit, a necessary subunit for proper synaptogenesis and synaptic plasticity. As the animal matures, the expression of the GluN2A subunit increases, leading to a partial replacement of GluN2B-containing synaptic NMDARs with GluN2A-containing receptors. The switch in the synaptic GluN2A-to-GluN2B ratio has a significant impact on the kinetics of excitatory postsynaptic currents and diminishes the synaptic plasticity capacity. In this study, we present findings indicating that GluN2A expression occurs earlier in a mouse model of fragile X syndrome (FXS). This altered timing of GluN2A expression affects various important parameters of NMDAR-mediated excitatory postsynaptic currents, including maximal current amplitude, decay time, and response to consecutive stimuli delivered in close temporal proximity. These observations suggest that the early expression of GluN2A during a critical period when synapses and circuits are developing could be an underlying factor contributing to the formation of pathological circuits in the FXS mouse model.NEW & NOTEWORTHY NMDA receptors (NMDARs) play important roles in synaptic transmission and are involved in multiple neurological disorders. During development, GluN2A in the forebrain becomes incorporated into previously GluN2B-dominated NMDARs, leading to the "GluN2A/GluN2B ratio switch." This is a crucial step for normal brain development. Here we present findings indicating that GluN2A expression occurs earlier in the fragile X mouse and this could be an underlying factor contributing to the pathology found in the fragile X model.
Subject(s)
Fragile X Syndrome , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Synaptic Transmission , Neuronal PlasticityABSTRACT
A wealth of genetic information is available describing single-nucleotide variants in the human population that appear to be well-tolerated and in and of themselves do not confer disease. These variant data sets contain signatures about the protein structure-function relationships and provide an unbiased view of various protein functions in the context of human health. This information can be used to determine regional intolerance to variation, defined as the missense tolerance ratio (MTR), which is an indicator of stretches of the polypeptide chain that can tolerate changes without compromising protein function in a manner that impacts human health. This approach circumvents the lack of comprehensive data by averaging the data from adjacent residues on the polypeptide chain. We reasoned that many motifs in proteins consist of nonadjacent residues, but together function as a unit. We therefore developed an approach to analyze nearest neighbors in three-dimensional space as determined by crystallography rather than on the polypeptide chain. We used members of the GRIN gene family that encode subunits of NMDA-type ionotropic glutamate receptors (iGluRs) to exemplify the differences between these methods. Our method, 3DMTR, provides new information about regions of intolerance within iGluRs, allows consideration of protein-protein interfaces in multimeric proteins, and moves this important research tool from one-dimensional analysis to a structurally relevant tool. We validate the improved 3DMTR score by showing that it more accurately classifies the functional consequences of a set of newly measured and published point mutations of Grin family genes than existing methods.
Subject(s)
Computational Biology , Proteins , Computational Biology/methods , Humans , Mutation, Missense , Proteins/geneticsABSTRACT
Aneurysmal subarachnoid hemorrhage (aSAH) may be associated with cerebral vasospasm, which can lead to delayed cerebral ischemia, infarction, and worsened functional outcomes. The delayed nature of cerebral ischemia secondary to SAH-related vasculopathy presents a window of opportunity for the evaluation of well-tolerated neuroprotective agents administered soon after ictus. Secondary ischemic injury in SAH is associated with increased extracellular glutamate, which can overactivate NMDA receptors (NMDARs), thereby triggering NMDAR-mediated cellular damage. In this study, we have evaluated the effect of the pH-sensitive GluN2B-selective NMDAR inhibitor, NP10679, on neurologic impairment after SAH. This compound demonstrates a selective increase in potency at the acidic extracellular pH levels that occur in the setting of ischemia. We found that NP10679 produced durable improvement of behavioral deficits in a well-characterized murine model of SAH, and these effects were greater than those produced by nimodipine alone, the current standard of care. In addition, we observed an unexpected reduction in SAH-induced luminal narrowing of the middle cerebral artery. Neither nimodipine nor NP10679 alter each other's pharmacokinetic profile, suggesting no obvious drug-drug interactions. Based on allometric scaling of both toxicological and efficacy data, the therapeutic margin in man should be at least 2. These results further demonstrate the utility of pH-dependent neuroprotective agents and GluN2B-selective NMDAR inhibitors as potential therapeutic strategies for the treatment of aSAH. Significance Statement This report describes the properties and utility of the GluN2B-selective pH-sensitive NMDA receptor inhibitor, NP10679, in a well-characterized rodent model of subarachnoid hemorrhage. We show that the administration of NP10679 improves long-term neurological function following subarachnoid hemorrhage, and that in rats there are no drug-drug interactions between NP10679 and nimodipine, the standard of care for this indication.
ABSTRACT
Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.
Subject(s)
Receptors, N-Methyl-D-Aspartate , Seizures , Humans , Virulence , Phenotype , Receptors, N-Methyl-D-Aspartate/genetics , BiophysicsABSTRACT
N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.
Subject(s)
Alzheimer Disease , Nervous System Diseases , Neurosteroids , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neurosteroids/pharmacology , Neurosteroids/therapeutic use , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Alzheimer Disease/drug therapy , Steroids/pharmacology , Allosteric Regulation/physiologyABSTRACT
The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.
Subject(s)
Epilepsy , Intellectual Disability , Receptors, N-Methyl-D-Aspartate , Humans , Epilepsy/genetics , Mutation, Missense/genetics , Receptors, N-Methyl-D-Aspartate/metabolismABSTRACT
AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.
Subject(s)
Nervous System Diseases , Humans , Nervous System Diseases/genetics , Synaptic Transmission/physiology , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/metabolismABSTRACT
BACKGROUND: Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS: We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS: Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION: These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.
Subject(s)
Epilepsy , Microcephaly , Receptors, N-Methyl-D-Aspartate , Humans , Heterozygote , Homozygote , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/geneticsABSTRACT
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Subject(s)
Receptors, Glutamate , Receptors, Ionotropic Glutamate , Animals , Central Nervous System , Glutamic Acid , Humans , Neurotransmitter Agents , Receptors, Ionotropic Glutamate/geneticsABSTRACT
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Subject(s)
Neoplasms , RGS Proteins , Humans , RGS Proteins/genetics , RGS Proteins/metabolism , Signal Transduction/genetics , GTP-Binding Proteins/metabolism , Mutation , Neoplasms/geneticsABSTRACT
Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.
Subject(s)
Astrocytes , Receptors, G-Protein-Coupled , Humans , Mice , Animals , Astrocytes/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Seizures/metabolismABSTRACT
N-methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptors, mediate a slow component of excitatory synaptic transmission in the central nervous system and play a key role in normal brain function and development. Genetic variations in GRIN genes encoding NMDAR subunits that alter the receptor's functional characteristics are associated with a wide range of neurological and neuropsychiatric conditions. Pathological GRIN variants located in the M2 re-entrant loop lining the channel pore cause significant functional changes, the most consequential alteration being a reduction in voltage-dependent Mg2+ inhibition. Voltage-dependent Mg2+ block is a unique feature of NMDAR biology whereby channel activation requires both ligand binding and postsynaptic membrane depolarization. Thus, loss of NMDAR Mg2+ block will have a profound impact on synaptic function and plasticity. Here, we choose 11 missense variants within the GRIN1, GRIN2A, and GRIN2B genes that alter residues located in the M2 loop and significantly reduce Mg2+ inhibition. Each variant was evaluated for tolerance to genetic variation using the 3-dimensional structure and assessed for functional rescue pharmacology via electrophysiological recordings. Three FDA-approved NMDAR drugs-memantine, dextromethorphan, and ketamine-were chosen based on their ability to bind near the M2 re-entrant loop, potentially rectifying dysregulated NMDAR function by supplementing the reduced voltage-dependent Mg2+ block. These results provide insight of structural determinants of FDA-approved NMDAR drugs at their binding sites in the channel pore and may further define conditions necessary for the use of such agents as potential rescue pharmacology.
ABSTRACT
Next-generation sequencing, which allows genome-wide detection of rare and de novo mutations, is transforming neuropsychiatric disease genetics through identifying on an unprecedented scale genes and protein-coding mutations that confer risk. Although understanding how regulatory variants influence risk remains a challenge, we are likely transitioning into a phase of neuropsychiatric disease genetics in which the rate-limiting step may no longer be gene discovery. Instead, the future will concentrate more on the biological and clinical translation of the torrent of specific risk mutations identified through next-generation sequencing. Here, we review the recent progress that resulted specifically from exome sequencing and emphasize the need for rigorous statistical evaluation of the expanding data sets, as well as expanded functional analysis of implicated proteins and mutations. Then, we introduce some of the expected opportunities and challenges investigators face when moving beyond the exome. Finally, we briefly highlight the challenge of deriving translational benefit from the progress in genetics.