Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Biol Evol ; 38(11): 4987-4991, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34320647

ABSTRACT

Phylogenetic reconstruction and species delimitation are often challenging in the case of recent evolutionary radiations, especially when postspeciation gene flow is present. Leopardus is a Neotropical cat genus that has a long history of recalcitrant taxonomic problems, along with both ancient and current episodes of interspecies admixture. Here, we employ genome-wide SNP data from all presently recognized Leopardus species, including several individuals from the tigrina complex (representing Leopardus guttulus and two distinct populations of Leopardus tigrinus), to investigate the evolutionary history of this genus. Our results reveal that the tigrina complex is paraphyletic, containing at least three distinct species. While one can be assigned to L. guttulus, the other two remain uncertain regarding their taxonomic assignment. Our findings indicate that the "tigrina" morphology may be plesiomorphic within this group, which has led to a longstanding taxonomic trend of lumping these poorly known felids into a single species.


Subject(s)
Felidae , Polymorphism, Single Nucleotide , Animals , Felidae/genetics , Gene Flow , Genome , Phylogeny
2.
Antonie Van Leeuwenhoek ; 111(4): 533-550, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29110156

ABSTRACT

As the depth increases and the light fades in oceanic cold seeps, a variety of chemosynthetic-based benthic communities arise. Previous assessments reported polychaete annelids belonging to the family Siboglinidae as part of the fauna at cold seeps, with the 'Vestimentifera' clade containing specialists that depend on microbial chemosynthetic endosymbionts for nutrition. Little information exists concerning the microbiota of the external portion of the vestimentiferan trunk wall. We employed 16S rDNA-based metabarcoding to describe the external microbiota of the chitin tubes from the vestimentiferan Escarpia collected from a chemosynthetic community in a cold seep area at the southwestern Atlantic Ocean. The most abundant operational taxonomic unit (OTU) belonged to the family Pirellulaceae (phylum Planctomycetes), and the second most abundant OTU belonged to the order Methylococcales (phylum Proteobacteria), composing an average of 21.1 and 15.4% of the total reads on tubes, respectively. These frequencies contrasted with those from the surrounding environment (sediment and water), where they represent no more than 0.1% of the total reads each. Moreover, some taxa with lower abundances were detected only in Escarpia tube walls. These data constitute on the first report of an epibiont microbial community found in close association with external surface of a cold-seep metazoan, Escarpia sp., from a chemosynthetic community in the southwestern Atlantic Ocean.


Subject(s)
Bacteria/classification , Biodiversity , Geologic Sediments/microbiology , Microbiota/physiology , Polychaeta/microbiology , Seawater/microbiology , Animals , Atlantic Ocean , Chemoautotrophic Growth , DNA Barcoding, Taxonomic , Ecosystem , Metagenome/genetics , Planctomycetales , Polychaeta/ultrastructure , RNA, Ribosomal, 16S/genetics
3.
Annu Rev Anim Biosci ; 9: 125-148, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33207915

ABSTRACT

The diversity of mammalian coat colors, and their potential adaptive significance, have long fascinated scientists as well as the general public. The recent decades have seen substantial improvement in our understanding of their genetic bases and evolutionary relevance, revealing novel insights into the complex interplay of forces that influence these phenotypes. At the same time, many aspects remain poorly known, hampering a comprehensive understanding of these phenomena. Here we review the current state of this field and indicate topics that should be the focus of additional research. We devote particular attention to two aspects of mammalian pigmentation, melanism and pattern formation, highlighting recent advances and outstanding challenges, and proposing novel syntheses of available information. For both specific areas, and for pigmentation in general, we attempt to lay out recommendations for establishing novel model systems and integrated research programs that target the genetics and evolution of these phenotypes throughout the Mammalia.


Subject(s)
Biological Evolution , Mammals/genetics , Pigmentation/genetics , Animal Fur/anatomy & histology , Animals , Color , Mammals/anatomy & histology , Phylogeny
4.
Braz J Microbiol ; 51(3): 1177-1190, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32394239

ABSTRACT

Anaerobic digestion (AD) is a process resulting from the anaerobic metabolism of specific microorganisms that produce an eco-friendly type of energy and a stabilized soil fertilizer. We described the microbial communities and their changes in three depths of BioKöhler® biodigester, fed with cattle manure for 18 days, under anaerobic incubation at the psychrophilic temperature range (~ 20 °C). During the experiment, the maximum methane content in the raw biogas was 79.9%. Non-metric multidimensional scaling (MDS) showed significant differences among microbial communities in the bottom, medium, and upper depths. Considering all the periods of incubation, the microbial communities changed until the eighth day, and they remained stable from eighth to seventeenth days. Bacteroidetes, Firmicutes, and Synergistetes were the most abundant phyla in samples, representing approximately 41% of the total OTUs. The relative abundance of the phyla Euryarchaeota, Actinobacteria, Firmicutes, and Verrucomicrobia changed from bottom to medium sampling points. Moreover, Crenarchaeota differed in frequencies from medium to upper, and Acidobacteria from bottom to upper samples. Lentisphaerae, Chloroflexi, and LD1 were different solely at the bottom, whereas OP9 and Tenericutes only in the medium. Psychrophilic AD performed in this work removed pathogens like Salmonella and Escherichia, as observed at the digestate analyzed. This type of treatment of raw manure besides producing eco-friendly energy efficiently also generates a stabilized and safe biomass that can be used as fertilizer in soils.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Microbiota , Anaerobiosis , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biofuels/analysis , Cattle , Manure/analysis , Manure/microbiology , Methane/metabolism , Soil Microbiology , Time Factors
5.
Health Sci Rep ; 1(6): e47, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30623080

ABSTRACT

AIMS: Influenza A virus (IAV) can cause severe acute respiratory infection (SARI), and disease outcome may be associated with changes in the microbiome of the nasopharynx. This is a pilot study to characterize the microbiome of the nasopharynx in patients hospitalized with SARI, infected and not infected by IAV. METHODS AND RESULTS: Using target sequencing of the 16S rRNA gene, we assessed the bacterial community of nasopharyngeal aspirate samples and compared the microbiome of patients infected with IAV with the microbiome of patients who were negative for IAV. We observed differences in the relative abundance of Proteobacteria and Firmicutes between SARI patients, with Streptococcus being enriched and Pseudomonas underrepresented in IAV patients compared with patients who were not infected with IAV. CONCLUSION: Pseudomonas taxon seems to be in high frequency on the nasopharynx of SARI patients with non-IAV infection and might present a negative association with Streptococcus taxon. Microbial profile appears to be different between SARI patients infected or not infected with IAV.

6.
Sci Adv ; 3(7): e1700299, 2017 07.
Article in English | MEDLINE | ID: mdl-28776029

ABSTRACT

The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages.


Subject(s)
Evolution, Molecular , Genome , Genomics , Panthera/genetics , Animals , Computational Biology/methods , Genetic Variation , Genome-Wide Association Study , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL