Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Phys Chem B ; 127(25): 5633-5644, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37315336

ABSTRACT

Time-resolved fluorescence spectroscopy in combination with differential scanning calorimetry (DSC) was used to study the chemical interactions that occur when l-phenylalanine is introduced to solutions containing phosphatidylcholine vesicles. Studies reported in this work address open questions about l-Phe's affinity for lipid vesicle bilayers, the effects of l-Phe partitioning on bilayer properties, l-Phe's solvation within a lipid bilayer, and the amount of l-Phe within that local solvation environment. DSC data show that l-Phe reduces the amount of heat necessary to melt saturated phosphatidylcholine bilayers from their gel to liquid-crystalline state but does not change the transition temperature (Tgel-lc). Time-resolved emission shows only a single l-Phe lifetime at low temperatures corresponding to l-Phe remaining solvated in aqueous solution. At temperatures close to Tgel-lc, a second, shorter lifetime appears that is assigned to l-Phe already embedded within the membrane that becomes hydrated as water starts to permeate the lipid bilayer. This new lifetime is attributed to a conformationally restricted rotamer in the bilayer's polar headgroup region and accounts for up to 30% of the emission amplitude. Results reported for dipalmitoylphosphatidylcholine (DPPC, 16:0) lipid vesicles prove to be general, with similar effects observed for dimyristoylphosphatidylcholine (DMPC, 14:0) and distearoylphosphatidylcholine (DSPC, 18:0) vesicles. Taken together, these results create a complete and compelling picture of how l-Phe associates with model biological membranes. Furthermore, this approach to examining amino acid partitioning into membranes and the resulting solvation forces points to new strategies for studying the structure and chemistry of membrane-soluble peptides and selected membrane proteins.


Subject(s)
Lipid Bilayers , Phenylalanine , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Cell Membrane , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/chemistry , Calorimetry, Differential Scanning , Water
2.
J Phys Chem B ; 124(38): 8299-8308, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32841033

ABSTRACT

Time-resolved fluorescence measurements were used to quantify partitioning of three different 7-aminocoumarin derivatives into DPPC vesicle bilayers as a function of temperature. The coumarin derivatives were structurally equivalent except for the degree of substitution at the 7-amine position. Calculated log P (octanol: water partitioning) coefficients, a common indicator that correlates with bioconcentration, predict that the primary amine (coumarin 151 or C151) would experience a ∼40-fold partition enrichment in polar organic environments (log PC151 = 1.6) while the tertiary amine's (coumarin 152 or C152) concentration should be >500 times enhanced (log PC152 = 2.7). Both values predict that partitioning into lipid membranes is energetically favorable. Time-resolved emission spectra from C151 in solutions containing DPPC vesicles showed that within detection limits, the solute remained in the aqueous buffer regardless of temperature and vesicle bilayer phase. C152 displayed a sharp uptake into DPPC bilayers as the temperature approached DPPC's gel-liquid crystalline transition temperature, consistent with previously reported results ([ J. Phys. Chem. B 2017, 121, 4061-4070]). The secondary amine, synthesized specifically for these studies and dubbed C151.5 with a measured log P value of 1.9, partitioned into the bilayer's polar head group with no pronounced temperature dependence. These experiments illustrate the limitations of using a gross descriptor of preferential solvation to describe solute partitioning into complex, heterogeneous systems having nanometer-scale dimensions. From a broader perspective, results presented in this work illustrate the need for more chemically informed tools for predicting a solute tendency for where and how much it will bioconcentrate within a biological membrane.


Subject(s)
Coumarins , Lipid Bilayers , Cell Membrane , Solutions , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL