Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Neuromuscul Disord ; 33(5): 371-381, 2023 05.
Article in English | MEDLINE | ID: mdl-37023487

ABSTRACT

Collagen VI-related myopathies are a group of disorders that cause muscle weakness and joint contractures with significant variability in disease severity among patients. Here we report the clinical and genetic characteristics of 13 Chinese patients. Detailed histological, radiological and muscle transcriptomic evaluations were also conducted for selected representative patients. Across the cohort, fifteen putative disease causal variants were identified in three genes encoding collagen VI subunits, COL6A1 (n=6), COL6A2 (n=5), and COL6A3 (n=4). Most of these variants (12/15, 80%) were dominant negative and occurred at the triple helical domain. The rest (3/15, 20%) were located at the C-terminus. Two previously unreported variants, an in-frame mutation (COL6A1:c.1084_1092del) and a missense mutation (COL6A2:c.811G>C), were also noted. The transcriptome data from the muscle biopsies of two patients in the study with dominant negative mutations [COL6A2:c.811G>C and COL6A1:c.930+189C>T] supports the accepted aetiology of Collagen VI myopathy as dysfunction of the extracellular matrix. It also suggests there are perturbations to skeletal muscle differentiation and skeletal system development. It should be noted that although the phenotypes of patients can be mostly explained by the position and dominant-negative effect of the variants, exceptions and variability still exist and have to be reckoned with. This study provides valuable data explaining the varying severity of phenotypes among ethnically Chinese patients.


Subject(s)
Muscular Diseases , Muscular Dystrophies , Humans , Transcriptome , Collagen Type VI/genetics , Muscular Diseases/genetics , Phenotype , Genotype , Mutation
2.
Neuromuscul Disord ; 30(1): 47-53, 2020 01.
Article in English | MEDLINE | ID: mdl-31926838

ABSTRACT

Megaconial congenital muscular dystrophy (CMD) is a rare form of congenital muscular dystrophy attributed to an autosomal recessive CHKB mutation. We report two unrelated Chinese girls with Megaconial CMD who harbored the same novel homozygous CHKB mutation but exhibited different phenotypes. Patient 1, who is now 8 years old, has autism, intellectual disabilities, mild girdle weakness, and characteristic muscle biopsy with COX-negative fibers. Patient 2, now 12 years old, has limited intelligence and marked weakness, with scoliosis, hip subluxation and early loss of ambulation. Both exhibited mildly elevated creatine kinase levels, have relative sparing of adductor longus and extensor digitorum longus on MRI leg muscles, and a c.598del (p.Gln200Argfs*11) homozygous CHKB loss-of-function mutation. Their parents are heterozygous carriers. This is the first report of Megaconial CMD in Chinese patients demonstrating the pathogenicity of the identified homozygous CHKB variant. A case review of all previously reported patients of different ethnicities is also included.


Subject(s)
Choline Kinase/genetics , Muscular Dystrophies/genetics , Child , China , Female , Humans , Magnetic Resonance Imaging , Muscular Dystrophies/diagnosis , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology
3.
JIMD Rep ; 47(1): 23-29, 2019 May.
Article in English | MEDLINE | ID: mdl-31240163

ABSTRACT

BACKGROUND: Primary coenzyme Q10 (CoQ10) deficiencies are clinically and genetically heterogeneous group of disorders associated with defects of genes involved in the CoQ10 biosynthesis pathway. COQ7-associated CoQ10 deficiency is very rare and only two cases have been reported. METHODS AND RESULTS: We report a patient with encephalo-myo-nephro-cardiopathy, persistent lactic acidosis, and basal ganglia lesions resulting in early infantile death. Using whole exome sequencing, we identified compound heterozygous variants in the COQ7 gene consisting of a deletion insertion resulting in frameshift [c.599_600delinsTAATGCATC, p.(Lys200Ilefs*56)] and a missense substitution [c.319C>T, p.(Arg107Trp), NM_016138.4]. Skin fibroblast studies showed decreased combined complex II + III activity and reduction in CoQ10 level. CONCLUSION: This third patient presenting with lethal encephalo-myo-nephro-cardiopathy represents the severe end of this ultra-rare mitochondrial disease caused by biallelic COQ7 mutations. The response to CoQ10 supplement is poor and alternative treatment strategies should be developed for a more effective management of this disorder.

SELECTION OF CITATIONS
SEARCH DETAIL