Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37689971

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Subject(s)
Antibodies, Monoclonal , Broadly Neutralizing Antibodies , COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , COVID-19/therapy , Dependovirus/genetics , RNA, Viral , SARS-CoV-2/genetics , Broadly Neutralizing Antibodies/pharmacology , Broadly Neutralizing Antibodies/therapeutic use
2.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Article in English | MEDLINE | ID: mdl-34379705

ABSTRACT

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Disease Models, Animal , 3T3 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Chlorocebus aethiops , Dependovirus/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transduction, Genetic , Vero Cells
3.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35799178

ABSTRACT

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
4.
Emerg Microbes Infect ; 12(1): 2149353, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36395071

ABSTRACT

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta-potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines , COVID-19 , Nanoparticles , Animals , Humans , Mice , Antibodies, Viral , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/immunology , COVID-19 Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL