ABSTRACT
To date, it remains challenging to precisely and efficiently construct structurally intriguing polycarbocycles with densely packed stereocenters in organic synthesis. Niduterpenoid B, a naturally occurring ERα inhibitor, exemplifies this complexity with its intricate polycyclic network comprising 5 cyclopentane and 1 cyclopropane rings, featuring 13 contiguous stereocenters, including 4 all-carbon quaternary centers. In this work, we describe the first total synthesis of niduterpenoid B using a structural reorganization strategy. Key features include the following: (1) an efficient methoxy-controlled cascade reaction that precisely forges a highly functionalized tetraquinane (A-D rings) bearing sterically hindered contiguous quaternary stereocenters; (2) a rhodium-catalyzed [1 + 2] cycloaddition that facilitates the construction of a strained 3/5 bicycle (E-F rings) angularly fused with ring D.
ABSTRACT
An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.
ABSTRACT
A nickel hydride-catalyzed regio- and enantioselective hydroalkylation reaction was developed to give access to a library of chiral ß- or γ-branched aromatic N-heterocycles. This intriguing asymmetric transformation features excellent selectivities, step- and atom-economies, and generating two kinds of chiral products through one synthetic strategy. Furthermore, the possible reaction mechanism was extensively investigated using numerous control experiments and density functional theory calculations.
ABSTRACT
The first total syntheses of polycyclic diterpenes phomopsene (1), methyl phomopsenonate (2), and iso-phomopsene (3) have been accomplished through the unusual cascade reorganization of C-C single bonds. This approach features: (i) a synergistic Nazarov cyclization/double ring expansions in one-step, developed by authors, to rapid and stereospecific construction of the 5/5/5/5 tetraquinane scaffold bearing contiguous quaternary centers and (ii) a one-pot strategic ring expansion through Beckmann fragmentation/recombination to efficiently assemble the requisite 5/5/6/5 tetracyclic skeleton of the target molecules 1-3. This work enables us to determine that the correct structure of iso-phomopsene is, in fact, the C7 epimer of the originally assigned structure. Finally, the absolute configurations of three target molecules were confirmed through enantioselective synthesis.
ABSTRACT
A catalytic enantioselective polycyclization of tertiary enamides with terminal silyl enol ethers has been developed by virtue of Cu(OTf)2 catalysis with a novel spiropyrroline-derived oxazole (SPDO) ligand. This tandem reaction offers an effective approach to assemble bicyclic and tricyclic N-heterocycles bearing both aza- and oxa-quaternary stereogenic centers, which are primal subunits in a range of natural alkaloids. Strategic application of this methodology and a late-stage radical cyclization as key steps have been showcased in the concise total synthesis of (-)-cephalocyclidin A.
ABSTRACT
An asymmetric [3+2] cycloaddition of quinone esters with 2,3-dihydrofuran has been realized via a newly developed Cu(II)/SPDO complex. It provides straightforward access to 2,3,3a,8a-tetrahydrofuro[2,3-b]benzofurans (TFB) with high enantioselectivity (up to 97.5:2.5 er) and diastereoselectivity (all >20:1 dr). The resulting adducts contain two adjacent stereocenters and a continuously functionalized benzene ring. Additionally, this transformation could be easily performed on a gram scale, allowing for expedient synthesis of natural dihydroaflatoxin D2 and aflatoxin B2.
ABSTRACT
An asymmetric intramolecular hydroalkylation of unactivated internal olefins with tethered cyclic ketones was realized by the cooperative catalysis of a newly designed chiral amine (SPD-NH2 ) and PdII complex, providing straightforward access to either bridged or fused bicyclic systems containing three stereogenic centers with excellent enantioselectivity (up to 99 % ee) and diastereoselectivity (up to >20 : 1 dr). Notably, the bicyclic products could be conveniently transformed into a diverse range of key structures frequently found in bioactive terpenes, such as Δ6 -protoilludene, cracroson D, and vulgarisins. The steric hindrance between the Ar group of the SPD-NH2 catalyst and the branched chain of the substrate, hydrogen-bonding interactions between the N-H of the enamine motif and the C=O of the directing group MQ, and the counterion of the PdII complex were identified as key factors for excellent stereoinduction in this dual catalytic process by density functional theory calculations.
ABSTRACT
An example of asymmetric Steglich-type rearrangement of enol lactones is reported. This highly enantioselective acyl transfer reaction is catalyzed by chiral isothiourea at ambient temperature and provides a useful synthetic approach to access enantioenriched spirotricyclic ß,ß'-diketones from a broad range of indanone or tetralone-derived lactones. Preliminary mechanistic studies suggest the initial formation of an N-acylated iminium cation intermediate that induces a following facial selective condensation.
Subject(s)
Ketones , Lactones , Stereoisomerism , CatalysisABSTRACT
Novel asymmetric mono- and dialkylation reactions of α-substituted 2,5-diketopiperazines catalyzed by new chiral spirocyclic-amide-derived triazolium organocatalysts have been developed, resulting in a range of enantioenriched 2,5-diketopiperazine derivatives containing one or two tetrasubstituted carbon stereocenters. The reactions feature high yields (up to 98%), and excellent cis-diastereo- and enantioselectivities (up to >20:1 dr, >99 % ee), and they provide a new asymmetric synthetic approach to important functionalized 2,5-diketopiperazine skeletons. Furthermore, a possible reaction mechanism was proposed based on both control experiments and extensive DFT calculations.
ABSTRACT
A facile benzylic alkylation of indenes and other arenes was developed from readily available primary and secondary alcohols using our newly investigated CCC pincer IrIII catalyst (SNIr-H). Excellent regioselectivity and yield (89 %) of the C3-alkylated indenes were obtained. Additionally, the challenging sp2 C-alkylation was readily accomplished. This method could be utilized for the synthesis of the analogs of a histamine H1 receptor antagonist and the functional material template molecule, indeno[2,1-a]indene. A hemilabile IrIII -dihydride intermediate was proposed based on control experiments and previous density functional theory (DFT) calculations for the borrowing hydrogen mechanism and is key to the success of this IrIII catalyst in the reduction of unactivated multi-substituted olefin intermediates.
ABSTRACT
A challenging direct asymmetric catalytic aerobic oxidative cross-coupling of 2-naphthylamine and 2-naphthol, using a novel CuI /SPDO system, has been successfully developed for the first time. Enantioenriched 3,3'-disubstituted NOBINs were achieved and could be readily derived to divergent chiral ligands and catalysts. This reaction features high enantioselectivities (up to 96 % ee) and good yields (up to 80 %). The DFT calculations suggest that the F-H interactions between CF3 of L17 and H-1,8 of 2-naphthol, and the π-π stacking between the two coupling partners could play vital roles in the enantiocontrol of this cross-coupling reaction.
ABSTRACT
Although copper-nitrene has been extensively studied as a versatile active species in various transformations, asymmetric reactions involving copper-nitrene have been limited to the aziridination of olefins. Herein, we report the novel copper-nitrene-catalyzed desymmetric oxaziridination reaction of cyclic diketones with alkyl azides and the subsequent rearrangement of the resulting highly active intermediate, which produces a synthetically challenging chiral bicyclic lactam containing a quaternary carbon center. This procedure not only enriches the copper-nitrene-catalyzed asymmetric reactions, but also provides an alternative strategy to address the inherent challenges of catalytic asymmetric Schmidt reactions. This unique reaction could inspire the investigation of novel copper-nitrene-catalyzed asymmetric transformations and their reaction mechanisms.
ABSTRACT
Previously, we have finished the total synthesis of lycojaponicumin A (2) via development of an efficient synthetic strategy using semipinacol rearrangement as a key step. In order to further demonstrate the generality of this synthetic route, herein, we report the total synthesis of another fawcettimine-type alkaloid sieboldine A (1) from the same intermediate, which possesses an A/B/D tricyclic ring system and vicinal quaternary centers of 1. The synthesis features late-stage site-selective redox reactions, Schmidt glycosylation cyclization, and highly selective transformations.
ABSTRACT
An enantioselective aldehyde α-alkylation/semipinacol rearrangement was achieved through organo-SOMO catalysis. The catalytically generated enamine radical cation serves as a carbon radical electrophile that can stereoselectively add to the alkene of an allylic alcohol and initiate ensuing ring-expansion of cyclopropanol or cyclobutanol. This tandem reaction enables the production of a wide range of nonracemic functionalizable α-quaternary-δ-carbonyl cycloketones in high yields and excellent enantioselectivity from simple aldehydes and allylic alcohols. As a key step, the intramolecular reaction was also successfully applied in the asymmetric total synthesis of (+)-cerapicol.
ABSTRACT
A tandem Bischler-Napieralski/semipinacol rearrangement reaction has been developed for the purpose of assembling a bis(spirocyclic) indole framework, a privileged structural unit of aspidofractinine-type monoterpenoid indole alkaloids, and was used in combination with a subsequent Mannich reaction to expeditiously construct the central bridged bicyclo[2.2.1]heptane ring system of these molecules with contiguous quaternary centers. The development of this novel strategy culminated in the collective total synthesis of four aspidofractinine alkaloids.
ABSTRACT
The catalytic asymmetric total syntheses of the biologically important and therapeutically valuable Amaryllidaceae alkaloids (-)-galanthamine and (-)-lycoramine have been divergently achieved from commercially available 3-butyn-1-ol. A newly developed spirocyclic pyrrolidine (SPD)-catalyzed enantioselective Robinson annulation rapidly constructs the key cis-hydrodibenzofuran core, which bears an all-carbon quaternary stereocenter of the target molecules with an excellent stereoselective control. Additionally, the current asymmetric synthetic strategy provides an alternative approach toward the syntheses of (-)-galanthamine and its analogues.
Subject(s)
Amaryllidaceae Alkaloids/chemical synthesis , Galantamine/chemical synthesis , Pyrrolidines/chemistry , Spiro Compounds/chemistry , Amaryllidaceae Alkaloids/chemistry , Catalysis , Galantamine/chemistry , Molecular Structure , StereoisomerismABSTRACT
A novel chiral 1,5-N,N-bidentate ligand based on a spirocyclic pyrrolidine oxazoline backbone was designed and prepared, and it coordinates CuBr in situ to form an unprecedented catalyst that enables efficient oxidative cross-coupling of 2-naphthols. Air serves as an external oxidant and generates a series of C1 -symmetric chiral BINOL derivatives with high enantioselectivity (up to 99 % ee) and good yield (up to 87 %). This approach is tolerant of a broader substrates scope, particularly substrates bearing various 3- and 3'-substituents. A preliminary investigation using one of the obtained C1 -symmetric BINOL products was used as an organocatalyst, exhibiting better enantioselectivity than the previously reported organocatalyst, for the asymmetric α-alkylation of amino esters.
ABSTRACT
An enantioselective sulfenylation/semipinacol rearrangement of 1,1-disubstituted and trisubstituted allylic alcohols was accomplished with a chiral Lewis base and a chiral Brønsted acid as cocatalysts, generating various ß-arylthio ketones bearing an all-carbon quaternary center in moderate to excellent yields and excellent enantioselectivities. These chiral arylthio ketone products are common intermediates with many applications, for example, in the design of new chiral catalysts/ligands and the total synthesis of natural products. Computational studies (DFT calculations) were carried out to explain the enantioselectivity and the role of the chiral Brønsted acid. Additionally, the synthetic utility of this method was exemplified by an enantioselective total synthesis of (-)-herbertene and a one-pot synthesis of a chiral sulfoxide and sulfone.
ABSTRACT
A novel chiral spirocyclic amide (SPA)-derived triazolium organocatalyst has been designed and demonstrated to effect asymmetric homo- and heterodialkylations of various bisoxindoles, enabling enantioselective construction of vicinal all-carbon quaternary stereocenters. These reactions feature excellent enantio- and diastereoselectivities (up to 99% ee and >20:1 dr) as well as good to high yields (up to 89% over two steps). As an application of this methodology, the first asymmetric total synthesis of (-)-chimonanthidine has been achieved.
ABSTRACT
Covering: 2011 to July 2017.Spiroketal (spiroacetal), a common moiety in numerous natural products, drugs and functional molecules, has been a central topic in organic chemistry for a long time. Owing to their structural diversity, important bioactivity and functional irreplaceability, natural spiroketals have attracted the interest of natural product chemists, medical chemists, biological chemists, agricultural chemists, synthetic chemists, and chemical biologists. In this review, we focus on the overview of the isolation, bioactivity, biosynthesis and total synthesis of spiroketals from 2011 to July 2017.