ABSTRACT
Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.
Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Animals , Aotidae , Crosses, Genetic , Drug Resistance , Gene Expression Regulation , Mutation , Protozoan Proteins/genetics , Protozoan Proteins/metabolismABSTRACT
Gamma interferon (IFN-γ) drives antiparasite responses and immunopathology during infection with Plasmodium species. Immunity-related GTPases (IRGs) are a class of IFN-γ-dependent proteins that are essential for cell autonomous immunity to numerous intracellular pathogens. However, it is currently unknown whether IRGs modulate responses during malaria. We have used the Plasmodium berghei ANKA (PbA) model in which mice develop experimental cerebral malaria (ECM) to study the roles of IRGM1 and IRGM3 in immunopathology. Induction of mRNA for Irgm1 and Irgm3 was found in the brains and spleens of infected mice at times of peak IFN-γ production. Irgm3-/- but not Irgm1-/- mice were completely protected from the development of ECM, and this protection was associated with the decreased induction of inflammatory cytokines, as well as decreased recruitment and activation of CD8+ T cells within the brain. Although antigen-specific proliferation of transferred CD8+ T cells was not diminished compared to that of wild-type recipients following PbA infection, T cells transferred into Irgm3-/- recipients showed a striking impairment of effector differentiation. Decreased induction of several inflammatory cytokines and chemokines (interleukin-6, CCL2, CCL3, and CCL4), as well as enhanced mRNA expression of type-I IFNs, was found in the spleens of Irgm3-/- mice at day 4 postinfection. Together, these data suggest that protection from ECM pathology in Irgm3-/- mice occurs due to impaired generation of CD8+ effector function. This defect is nonintrinsic to CD8+ T cells. Instead, diminished T cell responses most likely result from defective initiation of inflammatory responses in myeloid cells.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , GTP Phosphohydrolases/immunology , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Adoptive Transfer , Animals , Antigens, Protozoan/immunology , Brain/immunology , Brain/parasitology , Brain/pathology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/transplantation , Cell Proliferation/genetics , Chemokine CCL2/biosynthesis , Chemokine CCL3/biosynthesis , Chemokine CCL4/biosynthesis , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , Inflammation/genetics , Inflammation/immunology , Interferon Type I/biosynthesis , Interferon-gamma/immunology , Interleukin-6/biosynthesis , Malaria, Cerebral/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/geneticsABSTRACT
Chloroquine (CQ) is used to treat Plasmodium vivax malaria in areas where CQ resistance has not been reported. The use of artemisinin (ART)-based combination therapies (ACTs) to treat CQ-sensitive P. vivax infections is effective and convenient but may promote the emergence and worsening of ART resistance in sympatric Plasmodium falciparum populations. Here, we show that CQ effectively treats P. vivax malaria in Pursat Province, western Cambodia, where ART-resistant P. falciparum is highly prevalent and spreading. (This study has been registered at ClinicalTrials.gov under registration no. NCT00663546.).
Subject(s)
Chloroquine/pharmacology , Plasmodium vivax/drug effects , Anti-Infective Agents/pharmacology , Artemisinins/pharmacology , Cambodia , Drug Resistance , MalariaABSTRACT
The effects of persistent Plasmodium falciparum (Pf) infection and multiclonality on subsequent risk of clinical malaria have been reported, but the relationship between these 2 parameters and their relative impacts on the clinical outcome of infection are not understood. A longitudinal cohort study was conducted in a seasonal and high-transmission area of Mali, in which 500 subjects aged 1-65 years were followed for 1 year. Blood samples were collected every 2 weeks, and incident malaria cases were diagnosed and treated. Pf infection in each individual at each time point was assessed by species-specific nested-PCR, and Pf longitudinal prevalence per person (PfLP, proportion of Pf-positive samples over 1 year) was calculated. Multiclonality of Pf infection was measured using a 24-SNP DNA barcoding assay at 4 time-points (two in wet season, and two in dry season) over one year. PfLP was positively correlated with multiclonality at each time point (all r≥0.36; all P≤0.011). When host factors (e.g., age, gender), PfLP, and multiclonality (at the beginning of the transmission season) were analyzed together, only increasing age and high PfLP were associated with reduced clinical malaria occurrence or reduced number of malaria episodes (for both outcomes, P<0.001 for age, and P = 0.005 for PfLP). When age, PfLP and baseline Pf positivity were analyzed together, the effect of high PfLP remained significant even after adjusting for the other two factors (P = 0.001 for malaria occurrence and P<0.001 for number of episodes). In addition to host age and baseline Pf positivity, both of which have been reported as important modifiers of clinical malaria risk, our results demonstrate that persistent parasite carriage, but not baseline multiclonality, is associated with reduced risk of clinical disease in this population. Our study emphasizes the importance of considering repeated parasite exposure in future studies that evaluate clinical malaria risk.
Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Longitudinal Studies , Male , Mali/epidemiology , Middle Aged , Polymerase Chain Reaction , Prevalence , Young AdultABSTRACT
BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. METHODS: In this prospective cohort study, we enrolled patients aged 2-65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin-piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. FINDINGS: Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations, higher piperaquine 50% inhibitory concentration (IC50) values, and lower mefloquine IC50 values; none had multiple pfmdr1 copies, a genetic marker of mefloquine resistance. INTERPRETATION: Dihydroartemisinin-piperaquine failures are caused by both artemisinin and piperaquine resistance, and commonly occur in places where dihydroartemisinin-piperaquine has been used in the private sector. In Cambodia, artesunate plus mefloquine may be a viable option to treat dihydroartemisinin-piperaquine failures, and a more effective first-line ACT in areas where dihydroartemisinin-piperaquine failures are common. The use of single low-dose primaquine to eliminate circulating gametocytes is needed in areas where artemisinin and ACT resistance is prevalent. FUNDING: National Institute of Allergy and Infectious Diseases.
Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Adolescent , Adult , Aged , Artemisinins/administration & dosage , Cambodia/epidemiology , Child , Child, Preschool , Cohort Studies , Drug Therapy, Combination , Female , Genotype , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Male , Middle Aged , Prospective Studies , Quinolines/administration & dosage , Young AdultABSTRACT
BACKGROUND: Red blood cell variants protect African children from severe falciparum malaria. However, their individual and interactive effects on mild disease and parasite density, and their modification by age-dependent immunity, are poorly understood. In this study, we address these knowledge gaps in a prospective cohort study of malaria risk and Plasmodium falciparum densities in Malian children. METHODS: The Kenieroba Innate Defense Study for Malaria (KIDS-Malaria) was a 4-year prospective cohort study of children aged 6 months to 17 years undertaken in Mali between 2008 and 2011. Red blood cell variants were haemoglobin S (HbS), haemoglobin C (HbC), α thalassaemia, ABO blood groups, and glucose-6-phosphate dehydrogenase (G6PD) deficiency encoded by the X-linked A- allele. The primary outcome was malaria incidence, measured as the number of uncomplicated or severe malaria episodes over time. The secondary outcome was parasite density at the time of a malaria episode. We modelled incidence rate ratios with quasi-Poisson regression and we analysed parasite densities using generalised estimating equations. This study is registered with ClinicalTrials.gov, number NCT00669084. FINDINGS: Between May 1, 2008, and Dec 29, 2011, we enrolled 1586 children into the study. We successfully typed all five red blood cell variants for 1543 of these children, who therefore constituted the evaluable population and in whom we diagnosed 4091 malaria episodes over 2656 child-years of follow-up. In these 1543 children, red blood cell variants were common, and occurred at the following frequencies: sickle cell trait (HbAS) 220 (14%), HbC heterozygosity (HbAC) 103 (7%), α thalassaemia 438 (28%), type O blood group 621 (40%), and G6PD deficiency 72 (9%) in 767 boys and 158 (20%) in 776 girls. The overall incidence of malaria was 1.54 episodes per child-year of follow-up, ranging from 2.78 episodes per child-year at age 3 years to 0.40 episodes per child-year at age 17 years. The malaria incidence was lower in HbAS children than in HbAA children with normal haemoglobin (adjusted incidence rate ratio [aIRR] 0.66 [95% CI 0.59-0.75], p<0.0001) and lower in G6PD A-/A- homozygous girls than in G6PD A+/A+ girls (0.51 [0.29-0.90], p=0.020), but was higher in HbAC children than in HbAA children (1.15 [1.01-1.32], p=0.039). Parasite density was lower in HbAS children (median 10,550 parasites per µL [IQR 1350-26,250]) than in HbAA children (15,150 parasites per µL [4250-31,050]; p=0.0004). The HbAS-associated reductions in malaria risk and parasite density were greatest in early childhood. INTERPRETATION: The individual and interactive effects of HbAS, HbAC, and G6PD A-/A- genotypes on malaria risk and parasite density define clinical and cellular correlates of protection. Further identification of the molecular mechanisms of these protective effects might uncover new targets for intervention. FUNDING: Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health.