Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Bioconjug Chem ; 29(8): 2671-2678, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29927244

ABSTRACT

The influence on the resistance formation of polymers attached to antibiotics has rarely been investigated. In this study, ciprofloxacin (CIP) was conjugated to poly(2-methyl-2-oxazoline)s with an ethylene diamine end group (Me-PMOx28-EDA) via two different spacers (CIP modified with α,α'-dichloro- p-xylene-xCIP, CIP modified with chloroacetyl chloride-eCIP). The antibacterial activity of the conjugates against a number of bacterial strains shows a great dependence on the nature of the spacer. The Me-PMOx39-EDA-eCIP, containing a potentially cleavable linker, does not exhibit a molecular weight dependence on antibacterial activity in contrast to Me-PMOx27-EDA-xCIP. The resistance formation of both conjugates against Staphylococcus aureus and Escherichia coli was investigated. Both conjugates showed the potential to significantly delay the formation of resistant bacteria compared to the unmodified CIP. Closer inspection of a possible resistance mechanism by genome sequencing of the topoisomerase IV region of resistant S. aureus revealed that this bacterium mutates at the same position when building up resistance to CIP and to Me-PMOx27-EDA-xCIP. However, the S. aureus cells that became resistant against the polymer conjugate are fully susceptible to CIP. Thus, conjugation of CIP with PMOx seems to alter the resistance mechanism.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Polyamines/chemistry , Polyamines/pharmacology , Staphylococcus aureus/drug effects , Erythrocytes/drug effects , Kinetics , Microbial Sensitivity Tests
2.
Eur J Cancer ; 179: 124-135, 2023 01.
Article in English | MEDLINE | ID: mdl-36521334

ABSTRACT

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins c-met/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation
3.
Mol Cancer Ther ; 21(5): 821-830, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35247925

ABSTRACT

NRG1 fusions are recurrent somatic genome alterations occurring across several tumor types, including invasive mucinous lung adenocarcinomas and pancreatic ductal adenocarcinomas and are potentially actionable genetic alterations in these cancers. We initially discovered CD74-NRG1 as the first NRG1 fusion in lung adenocarcinomas, and many additional fusion partners have since been identified. Here, we present the first CD74-NRG1 transgenic mouse model and provide evidence that ubiquitous expression of the CD74-NRG1 fusion protein in vivo leads to tumor development at high frequency. Furthermore, we show that ERBB2:ERBB3 heterodimerization is a mechanistic event in transformation by CD74-NRG1 binding physically to ERBB3 and that CD74-NRG1-expressing cells proliferate independent of supplemented NRG1 ligand. Thus, NRG1 gene fusions are recurrent driver oncogenes that cause oncogene dependency. Consistent with these findings, patients with NRG1 fusion-positive cancers respond to therapy targeting the ERBB2:ERBB3 receptors.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Carcinogenesis/genetics , Humans , Mice , Neuregulin-1/genetics , Oncogenes , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics
4.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35486541

ABSTRACT

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mutagenesis, Insertional , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
5.
Oncogene ; 40(1): 1-11, 2021 01.
Article in English | MEDLINE | ID: mdl-33060857

ABSTRACT

EGFR mutations account for the majority of druggable targets in lung adenocarcinoma. Over the past decades the optimization of EGFR inhibitors revolutionized the treatment options for patients suffering from this disease. The pace of this development was largely dictated by the inevitable emergence of resistance mutations during drug treatment. As a result, a rapid understanding of the structural and molecular biology of the individual mutations is the key for the development of next-generation inhibitors. Currently, the field faces an unprecedented number of combinations of activating mutations with distinct resistance mutations in parallel to the approval of osimertinib as a first-line drug for EGFR-mutant lung cancer. In this review, we present a survey of the diverse landscape of EGFR resistance mechanisms with a focus on new insights into on-target EGFR kinase mutations. We discuss array of mutations, their structural effects on the EGFR kinase domain as well as the most promising strategies to overcome the individual resistance profiles found in lung cancer patients.


Subject(s)
Adenocarcinoma of Lung/genetics , Drug Resistance, Neoplasm , Lung Neoplasms/genetics , Mutation , Adenocarcinoma of Lung/drug therapy , ErbB Receptors/chemistry , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Models, Molecular , Protein Conformation , Protein Domains , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
6.
Nat Commun ; 12(1): 2048, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824345

ABSTRACT

Loss of TP53 and RB1 in treatment-naïve small cell lung cancer (SCLC) suggests selective pressure to inactivate cell death pathways prior to therapy. Yet, which of these pathways remain available in treatment-naïve SCLC is unknown. Here, through systemic analysis of cell death pathway availability in treatment-naïve SCLC, we identify non-neuroendocrine (NE) SCLC to be vulnerable to ferroptosis through subtype-specific lipidome remodeling. While NE SCLC is ferroptosis resistant, it acquires selective addiction to the TRX anti-oxidant pathway. In experimental settings of non-NE/NE intratumoral heterogeneity, non-NE or NE populations are selectively depleted by ferroptosis or TRX pathway inhibition, respectively. Preventing subtype plasticity observed under single pathway targeting, combined treatment kills established non-NE and NE tumors in xenografts, genetically engineered mouse models of SCLC and patient-derived cells, and identifies a patient subset with drastically improved overall survival. These findings reveal cell death pathway mining as a means to identify rational combination therapies for SCLC.


Subject(s)
Ferroptosis , Neuroendocrine Tumors/pathology , Small Cell Lung Carcinoma/pathology , Animals , Antioxidants/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Survival , Humans , Lipid Metabolism , Male , Mice, Nude , Models, Biological , Necroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipids/metabolism , Prognosis , Thioredoxins/metabolism
7.
NPJ Precis Oncol ; 5(1): 102, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34921211

ABSTRACT

Activation of MAPK signaling via BRAF mutations may limit the activity of EGFR inhibitors in EGFR-mutant lung cancer patients. However, the impact of BRAF mutations on the selection and fitness of emerging resistant clones during anti-EGFR therapy remains elusive. We tracked the evolution of subclonal mutations by whole-exome sequencing and performed clonal analyses of individual metastases during therapy. Complementary functional analyses of polyclonal EGFR-mutant cell pools showed a dose-dependent enrichment of BRAFV600E and a loss of EGFR inhibitor susceptibility. The clones remain stable and become vulnerable to combined EGFR, RAF, and MEK inhibition. Moreover, only osimertinib/trametinib combination treatment, but not monotherapy with either of these drugs, leads to robust tumor shrinkage in EGFR-driven xenograft models harboring BRAFV600E mutations. These data provide insights into the dynamics of clonal evolution of EGFR-mutant tumors and the therapeutic implications of BRAF co-mutations that may facilitate the development of treatment strategies to improve the prognosis of these patients.

8.
J Med Chem ; 63(20): 11725-11755, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32931277

ABSTRACT

Mutated or amplified Her2 serves as a driver of non-small cell lung cancer or mediates resistance toward the inhibition of its family member epidermal growth factor receptor with small-molecule inhibitors. To date, small-molecule inhibitors targeting Her2 which can be used in clinical routine are lacking, and therefore, the development of novel inhibitors was undertaken. In this study, the well-established pyrrolopyrimidine scaffold was modified with structural motifs identified from a screening campaign with more than 1600 compounds, which were applied against wild-type Her2 and its mutant variant Her2-A775_G776insYVMA. The resulting inhibitors were designed to covalently target a reactive cysteine in the binding site of Her2 and were further optimized by means of structure-based drug design utilizing a set of obtained complex crystal structures. In addition, the analysis of binding kinetics and absorption, distribution, metabolism, and excretion parameters as well as mass spectrometry experiments and western blot analysis substantiated our approach.


Subject(s)
Drug Design , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Kinetics , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Chem Sci ; 10(46): 10789-10801, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31857889

ABSTRACT

Precision medicine has revolutionized the treatment of patients in EGFR driven non-small cell lung cancer (NSCLC). Targeted drugs show high response rates in genetically defined subsets of cancer patients and markedly increase their progression-free survival as compared to conventional chemotherapy. However, recurrent acquired drug resistance limits the success of targeted drugs in long-term treatment and requires the constant development of novel efficient inhibitors of drug resistant cancer subtypes. Herein, we present covalent inhibitors of the drug resistant gatekeeper mutant EGFR-L858R/T790M based on the pyrrolopyrimidine scaffold. Biochemical and cellular characterization, as well as kinase selectivity profiling and western blot analysis, substantiate our approach. Moreover, the developed compounds possess high activity against multi drug resistant EGFR-L858R/T790M/C797S in biochemical assays due to their highly reversible binding character, that was revealed by characterization of the binding kinetics. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR which provide detailed insight into their binding mode.

10.
Nat Commun ; 10(1): 3485, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375684

ABSTRACT

MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-myc/metabolism , Small Cell Lung Carcinoma/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , CRISPR-Cas Systems/genetics , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Mice , Molecular Targeted Therapy/methods , Proto-Oncogene Proteins c-myc/genetics , RNA, Small Interfering/metabolism , Small Cell Lung Carcinoma/drug therapy
11.
Nat Commun ; 9(1): 4655, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405134

ABSTRACT

The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors.


Subject(s)
Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Acrylamides , Aniline Compounds , Animals , Cell Line, Tumor , Disease Progression , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Female , Humans , Kinetics , Mice , Mice, Nude , Mutation/genetics , NIH 3T3 Cells , Piperazines/chemistry , Protein Binding/drug effects , Protein Conformation , Protein Kinase Inhibitors/chemistry
12.
J Med Chem ; 60(6): 2361-2372, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28225269

ABSTRACT

The specific targeting of oncogenic mutant epidermal growth factor receptor (EGFR) is a breakthrough in targeted cancer therapy and marks a drastic change in the treatment of non-small cell lung cancer (NSCLC). The recurrent emergence of resistance to these targeted drugs requires the development of novel chemical entities that efficiently inhibit drug-resistant EGFR. Herein, we report the optimization process for a hit compound that has emerged from a phenotypic screen resulting in indazole-based compounds. These inhibitors are conformationally less flexible, target gatekeeper mutated drug-resistant EGFR-L858R/T790M, and covalently alkylate Cys797. Western blot analysis, as well as characterization of the binding kinetics and kinase selectivity profiling, substantiates our approach of targeting drug-resistant EGFR-L858R/T790M with inhibitors incorporating the indazole as hinge binder.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , Humans , Indazoles , Lung/drug effects , Lung/metabolism , Lung Neoplasms/genetics , Mice , Molecular Docking Simulation , Mutation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology
13.
J Med Chem ; 60(13): 5613-5637, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28603991

ABSTRACT

Inhibition of the epidermal growth factor receptor represents one of the most promising strategies in the treatment of lung cancer. Acquired resistance compromises the clinical efficacy of EGFR inhibitors during long-term treatment. The recently discovered EGFR-C797S mutation causes resistance against third-generation EGFR inhibitors. Here we present a rational approach based on extending the inhibition profile of a p38 MAP kinase inhibitor toward mutant EGFR inhibition. We used a privileged scaffold with proven cellular potency as well as in vivo efficacy and low toxicity. Guided by molecular modeling, we synthesized and studied the structure-activity relationship of 40 compounds against clinically relevant EGFR mutants. We successfully improved the cellular EGFR inhibition down to the low nanomolar range with covalently binding inhibitors against a gefitinib resistant T790M mutant cell line. We identified additional noncovalent interactions, which allowed us to develop metabolically stable inhibitors with high activities against the osimertinib resistant L858R/T790M/C797S mutant.


Subject(s)
ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Imidazoles/chemistry , Imidazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Gefitinib , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Molecular Docking Simulation , Point Mutation , Quinazolines/pharmacology , Structure-Activity Relationship
14.
J Med Chem ; 60(18): 7725-7744, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28853575

ABSTRACT

Reversible epidermal growth factor receptor (EGFR) inhibitors prompt a beneficial clinical response in non-small cell lung cancer patients who harbor activating mutations in EGFR. However, resistance mutations, particularly the gatekeeper mutation T790M, limit this efficacy. Here, we describe a structure-guided development of a series of covalent and mutant-selective EGFR inhibitors that effectively target the T790M mutant. The pyrazolopyrimidine-based core differs structurally from that of aminopyrimidine-based third-generation EGFR inhibitors and therefore constitutes a new set of inhibitors that target this mechanism of drug resistance. These inhibitors exhibited strong inhibitory effects toward EGFR kinase activity and excellent inhibition of cell growth in the drug-resistant cell line H1975, without significantly affecting EGFR wild-type cell lines. Additionally, we present the in vitro ADME/DMPK parameters for a subset of the inhibitors as well as in vivo pharmacokinetics in mice for a candidate with promising activity profile.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Molecular Docking Simulation , Point Mutation , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL