Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Pharmacol Exp Ther ; 380(1): 54-62, 2022 01.
Article in English | MEDLINE | ID: mdl-34697230

ABSTRACT

Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years, and there is a great need for new compounds with novel mechanisms of action. Our group has developed protein kinase C (PKC)-modulating isophthalic acid derivatives that induce cytotoxicity toward human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco-2, Colo205, and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability, and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors, we identified activation of the cAMP/PKA pathway as a new mechanism of action for HMI-1a3-induced anticancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anticancer agent against various malignancies. SIGNIFICANCE STATEMENT: Colorectal cancer (CRC) is a common solid organ malignancy. This study demonstrates that the protein kinase C (PKC)-C1 domain-targeted isophthalatic acid derivative 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) has anticancer activity on CRC cell lines independently of PKC. We identified PKA activation as a mechanism of HMI-1a3-induced anticancer effects. The results reveal a new anticancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.


Subject(s)
Colorectal Neoplasms/metabolism , Phthalic Acids/pharmacology , Apoptosis/drug effects , Caco-2 Cells , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , HT29 Cells , Humans
2.
Mov Disord ; 35(2): 245-255, 2020 02.
Article in English | MEDLINE | ID: mdl-31840869

ABSTRACT

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS: We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS: BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION: The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Dopaminergic Neurons/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine/pharmacology , Dopaminergic Neurons/drug effects , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Mice , Oxidopamine/pharmacology , Parkinson Disease, Secondary/chemically induced , Substantia Nigra/drug effects
3.
J Chem Inf Model ; 60(11): 5624-5633, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32915560

ABSTRACT

Increasing protein kinase C (PKC) activity is of potential therapeutic value. Its activation involves an interaction between the C1 domain and diacylglycerol (DAG) at intracellular membrane surfaces; DAG mimetics hold promise as new drugs. We previously developed the isophthalate derivative HMI-1a3, an effective but highly lipophilic (clogP = 6.46) DAG mimetic. Although a less lipophilic pyrimidine analog, PYR-1gP (clogP = 3.30), gave positive results in computational docking, it unexpectedly presented greatly diminished binding to PKC in vitro. Through more rigorous computational molecular modeling, we reveal that, unlike HMI-1a3, PYR-1gP forms an intramolecular hydrogen bond, which both obstructs binding and reorients PYR-1gP in the membrane in a fashion that prevents it from correctly accessing the PKC C1 domain. Our results highlight the great value of molecular dynamics simulations as a key component for the drug design process of ligands targeting weakly membrane-associated proteins, where simulation in the relevant membrane environment is crucial for obtaining biologically applicable results.


Subject(s)
Molecular Dynamics Simulation , Protein Kinase C , Drug Design , Ligands , Phosphorylation , Protein Kinase C/metabolism
4.
J Neurosci Res ; 97(3): 346-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30548446

ABSTRACT

Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.


Subject(s)
Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism , Animals , Dependovirus , Dopamine/metabolism , Down-Regulation , Female , Humans , Male , Models, Animal , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar
5.
Mol Ther ; 26(1): 238-255, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29050872

ABSTRACT

Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs die shortly after injury or are unable to arrive at the infarct boundary. In this study, we demonstrate for the first time that endogenous mesencephalic astrocyte-derived neurotrophic factor (MANF) protects NSCs against oxygen-glucose-deprivation-induced injury and has a crucial role in regulating NPC migration. In NSC cultures, MANF protein administration did not affect growth of cells but triggered neuronal and glial differentiation, followed by activation of STAT3. In SVZ explants, MANF overexpression facilitated cell migration and activated the STAT3 and ERK1/2 pathway. Using a rat model of cortical stroke, intracerebroventricular injections of MANF did not affect cell proliferation in the SVZ, but promoted migration of doublecortin (DCX)+ cells toward the corpus callosum and infarct boundary on day 14 post-stroke. Long-term infusion of MANF into the peri-infarct zone increased the recruitment of DCX+ cells in the infarct area. In conclusion, our data demonstrate a neuroregenerative activity of MANF that facilitates differentiation and migration of NPCs, thereby increasing recruitment of neuroblasts in stroke cortex.


Subject(s)
Cell Differentiation/genetics , Nerve Growth Factors/genetics , Nerve Regeneration/genetics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Stroke/genetics , Animals , Astrocytes/cytology , Astrocytes/metabolism , Brain/metabolism , Brain/pathology , Cell Death , Cell Self Renewal/genetics , Cells, Cultured , Disease Models, Animal , Doublecortin Protein , Fluorescent Antibody Technique , Gene Expression , Immunohistochemistry , Mice , Mice, Knockout , Neuroglia/cytology , Neuroglia/metabolism , Neurons/cytology , Neurons/metabolism , STAT3 Transcription Factor/metabolism , Stress, Physiological , Stroke/metabolism , Stroke/pathology
6.
Ann Neurol ; 81(2): 251-265, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28074534

ABSTRACT

OBJECTIVE: Rewiring of excitatory glutamatergic neuronal circuits is a major abnormality in epilepsy. Besides the rewiring of excitatory circuits, an abnormal depolarizing γ-aminobutyric acidergic (GABAergic) drive has been hypothesized to participate in the epileptogenic processes. However, a remaining clinically relevant question is whether early post-status epilepticus (SE) evoked chloride dysregulation is important for the remodeling of aberrant glutamatergic neuronal circuits. METHODS: Osmotic minipumps were used to infuse intracerebrally a specific inhibitor of depolarizing GABAergic transmission as well as a functionally blocking antibody toward the pan-neurotrophin receptor p75 (p75NTR ). The compounds were infused between 2 and 5 days after pilocarpine-induced SE. Immunohistochemistry for NKCC1, KCC2, and ectopic recurrent mossy fiber (rMF) sprouting as well as telemetric electroencephalographic and electrophysiological recordings were performed at day 5 and 2 months post-SE. RESULTS: Blockade of NKCC1 after SE with the specific inhibitor bumetanide restored NKCC1 and KCC2 expression, normalized chloride homeostasis, and significantly reduced the glutamatergic rMF sprouting within the dentate gyrus. This mechanism partially involves p75NTR signaling, as bumetanide application reduced SE-induced p75NTR expression and functional blockade of p75NTR decreased rMF sprouting. The early transient (3 days) post-SE infusion of bumetanide reduced rMF sprouting and recurrent seizures in the chronic epileptic phase. INTERPRETATION: Our findings show that early post-SE abnormal depolarizing GABA and p75NTR signaling fosters a long-lasting rearrangement of glutamatergic network that contributes to the epileptogenic process. This finding defines promising and novel targets to constrain reactive glutamatergic network rewiring in adult epilepsy. Ann Neurol 2017;81:251-265.


Subject(s)
Bumetanide/pharmacology , Mossy Fibers, Hippocampal/drug effects , Receptors, Nerve Growth Factor/drug effects , Signal Transduction/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Solute Carrier Family 12, Member 2/drug effects , Status Epilepticus/metabolism , Symporters/drug effects , gamma-Aminobutyric Acid/drug effects , Animals , Bumetanide/administration & dosage , Male , Nerve Tissue Proteins , Rats , Rats, Wistar , Receptors, Growth Factor , Sodium Potassium Chloride Symporter Inhibitors/administration & dosage , Status Epilepticus/drug therapy , Status Epilepticus/physiopathology , K Cl- Cotransporters
7.
Biochem Soc Trans ; 42(6): 1543-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25399568

ABSTRACT

Protein kinase C (PKC) is a serine/threonine kinase belonging to the AGC family. PKC isoenzymes are activated by phospholipid-derived second messengers, transmit their signal by phosphorylating specific substrates and play a pivotal role in the regulation of various cell functions, including metabolism, growth, differentiation and apoptosis. Therefore they represent an interesting molecular target for the treatment of several diseases, such as cancer and Alzheimer's disease. Adopting a structure-based approach on the crystal structure of the PKCδ C1B domain, our team has developed isophthalic acid derivatives that are able to modify PKC functions by binding to the C1 domain of the enzyme. Bis[3-(trifluoromethyl)benzyl] 5-(hydroxymethyl)isophthalate (HMI-1a3) and bis(1-ethylpentyl) 5-(hydroxymethyl)isophthalate (HMI-1b11) were selected from a set of compounds for further studies due to their high affinity for the C1 domains of PKCα and PKCδ. HMI-1a3 showed marked antiproliferative activity in HeLa cells whereas HMI-1b11 induced differentiation and supported neurite growth in SH-SY5Y cells. Our aim in the future is to improve the selectivity and potency of isophthalate derivatives, to clarify their mechanism of action in the cellular environment and to assess their efficacy in cell-based and in vivo disease models. HMI-1a3 has already been selected for a further project and redesigned to function as a probe immobilized on an affinity chromatography column. It will be used to identify cellular target proteins from cell lysates, providing new insights into the mechanism of action of HMI-1a3.


Subject(s)
Phthalic Acids/pharmacology , Protein Kinase C/drug effects , Cell Line , Drug Design , Humans , Molecular Structure , Signal Transduction , Structure-Activity Relationship
8.
Basic Clin Pharmacol Toxicol ; 135(3): 271-284, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38973499

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopamine neurons and aberrant deposits of alpha-synuclein (α-syn) in the brain. The symptomatic treatment is started after the onset of motor manifestations in a late stage of the disease. Preclinical studies with neurotrophic factors (NTFs) show promising results of disease-modifying neuroprotective or even neurorestorative effects. Four NTFs have entered phase I-II clinical trials with inconclusive outcomes. This is not surprising because the preclinical evidence is from acute early-stage disease models, but the clinical trials included advanced PD patients. To conclude the value of NTF therapies, clinical studies should be performed in early-stage patients with prodromal symptoms, that is, before motor manifestations. In this review, we summarize currently available diagnostic and prognostic biomarkers that could help identify at-risk patients benefiting from NTF therapies. Focus is on biochemical and imaging biomarkers, but also other modalities are discussed. Neuroimaging is the most important diagnostic tool today, but α-syn imaging is not yet viable. Modern techniques allow measuring various forms of α-syn in cerebrospinal fluid, blood, saliva, and skin. Digital biomarkers and artificial intelligence offer new means for early diagnosis and longitudinal follow-up of degenerative brain diseases.


Subject(s)
Biomarkers , Early Diagnosis , Nerve Growth Factors , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Biomarkers/metabolism , Biomarkers/blood , Nerve Growth Factors/metabolism , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/cerebrospinal fluid , Neuroimaging/methods
9.
Pharmacol Res ; 73: 44-54, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23643828

ABSTRACT

Protein kinase C (PKC) is a family of serine/threonine phosphotransferases ubiquitously expressed and involved in multiple cellular functions, such as proliferation, apoptosis and differentiation. The C1 domain of PKC represents an attractive drug target, especially for developing PKC activators. Dialkyl 5-(hydroxymethyl)isophthalates are a novel group of synthetic C1 domain ligands that exhibit antiproliferative effect in HeLa cervical carcinoma cells. Here we selected two isophthalates, HMI-1a3 and HMI-1b11, and characterized their effects in the human neuroblastoma cell line SH-SY5Y. Both of the active isophthalates exhibited significant antiproliferative and differentiation-inducing effects. Since HMI-1b11 did not impair cell survival even at the highest concentration tested (20µM), and supported neurite growth and differentiation of SH-SY5Y cells, we focused on studying its downstream signaling cascades and effects on gene expression. Consistently, genome-wide gene expression microarray and gene set enrichment analysis indicated that HMI-1b11 (10µM) induced changes in genes mainly related to cell differentiation. In particular, further studies revealed that HMI-1b11 exposure induced up-regulation of GAP-43, a marker for neurite sprouting and neuronal differentiation. These effects were induced by a 7-min HMI-1b11 treatment and specifically depended on PKCα activation, since pretreatment with the selective inhibitor Gö6976 abolished the up-regulation of GAP-43 protein observed at 12h. In parallel, we found that a 7-min exposure to HMI-1b11 induced PKCα accumulation to the cytoskeleton, an effect that was again prevented by pretreatment with Gö6976. Despite similar binding affinities to PKC, the isophthalates had different effects on PKC-dependent ERK1/2 signaling: HMI-1a3-induced ERK1/2 phosphorylation was transient, while HMI-1b11 induced a rapid but prolonged ERK1/2 phosphorylation. Overall our data are in accordance with previous studies showing that activation of the PKCα and ERK1/2 pathways participate in regulating neuronal differentiation. Furthermore, since PKC has been classified as one of the cognitive kinases, and activation of PKC is considered a potential therapeutic strategy for the treatment of cognitive disorders, our findings suggest that HMI-1b11 represents a promising lead compound in research aimed to prevent or counteract memory impairment.


Subject(s)
GAP-43 Protein/metabolism , Neurites/drug effects , Phthalic Acids/pharmacology , Protein Kinase C-alpha/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation/drug effects , GAP-43 Protein/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neurites/physiology , Neuroblastoma/metabolism , Phthalic Acids/chemistry , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary
10.
Nature ; 448(7149): 73-7, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17611540

ABSTRACT

In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.


Subject(s)
Nerve Growth Factors/physiology , Neurons/physiology , Amino Acid Sequence , Animals , Brain/embryology , Brain/metabolism , Cloning, Molecular , Conserved Sequence , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Humans , In Situ Hybridization , Male , Mice , Molecular Sequence Data , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/therapeutic use , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurons/metabolism , Neuroprotective Agents/therapeutic use , Oxidopamine , Parkinson Disease/drug therapy , Protein Processing, Post-Translational , RNA, Messenger , Rats , Rats, Wistar , Substantia Nigra/metabolism
11.
Duodecim ; 129(1): 43-50, 2013.
Article in Fi | MEDLINE | ID: mdl-23431881

ABSTRACT

Novel drugs only seldom involve a new mechanism of action. While new targets of action of antimicrobial drugs have been found especially within the replicative cycle of the HI virus, new antibacterial drugs remain very scarce. The powerful emergence of molecular biology is evident in the strong increase in the proportion of biotechnological drugs, particularly as far as drugs intended for cancer treatment and those affecting the immune system are concerned. Clinical use of biological drugs is still new, and big problems have so far not been associated with these products.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Biological Products/pharmacology , Molecular Biology , Humans
12.
J Med Chem ; 66(7): 4588-4602, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37010933

ABSTRACT

Protein kinase C (PKC) modulators hold therapeutic potential for various diseases, including cancer, heart failure, and Alzheimer's disease. Targeting the C1 domain of PKC represents a promising strategy; the available protein structures warrant the design of PKC-targeted ligands via a structure-based approach. However, the PKC C1 domain penetrates the lipid membrane during binding, complicating the design of drug candidates. The standard docking-scoring approach for PKC lacks information regarding the dynamics and the membrane environment. Molecular dynamics (MD) simulations with PKC, ligands, and membranes have been used to address these shortcomings. Previously, we observed that less computationally intensive simulations of just ligand-membrane interactions may help elucidate C1 domain-binding prospects. Here, we present the design, synthesis, and biological evaluation of new pyridine-based PKC agonists implementing an enhanced workflow with ligand-membrane MD simulations. This workflow holds promise to expand the approach in drug design for ligands targeted to weakly membrane-associated proteins.


Subject(s)
Drug Design , Molecular Dynamics Simulation , Protein Kinase C , Drug Design/methods , Ligands , Protein Binding , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/chemistry , Pyridines/pharmacology , Protein Kinase Inhibitors/chemistry
13.
J Neurosci Res ; 90(3): 682-90, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22108958

ABSTRACT

Minocycline, a tetracyclic antibiotic, exerts both antiinflammation by acting on microglia and a direct protection on neurons by inhibiting the apoptotic machinery at various levels. However, we are not aware of any study investigating the effects of minocycline on caspase-independent programmed cell death (PCD) pathways. This study investigated these alternative pathways in SH-SY5Y cells, a human dopaminergic cell line, challenged with 6-hydroxydopamine (6-OHDA). Minocycline exhibited neuroprotection and inhibition of the toxin-induced caspase-3-like activity, DNA fragmentation, and chromatin condensation, hallmarks of apoptosis. Moreover, we revealed that 6-OHDA also activated caspase-independent PCDs (such as paraptosis), which required de novo protein synthesis. Additionally, by separately monitoring caspase-dependent and caspase-independent pathways, we showed that inhibition of apoptosis only partially explained the protective effect of minocycline. Moreover, we observed that minocycline reduced the protein content of cells but, unexpectedly, increased the protein synthesis. These findings suggest that minocycline may actually increase protein degradation, so it may also accelerate the clearance of aberrant proteins. In conclusion, we report for the first time evidence indicating that minocycline may inhibit PCD pathways that are additional to conventional apoptosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Minocycline/pharmacology , Neurons/drug effects , Oxidopamine/pharmacology , Caspase 3/metabolism , Cell Line , Cells, Cultured , DNA Fragmentation/drug effects , Humans , Neurons/metabolism
14.
J Am Pharm Assoc (2003) ; 52(5): 630-3, 2012.
Article in English | MEDLINE | ID: mdl-23023843

ABSTRACT

OBJECTIVES: To assess drug-related problems (DRPs) documented by specially trained community pharmacists during the Finnish comprehensive medication review (CMR) procedure and to describe the resulting interventions for home-dwelling and assisted-living primary care patients 65 years or older. METHODS: Retrospective analysis of applicable written CMR case reports for primary care patients 65 years or older by 26 community pharmacists attending a 1.5-year CMR accreditation training (174 patients recruited; 121 included in the analysis). The main outcome measures were DRPs and physicians' acceptance of pharmacists' recommendations. RESULTS: The pharmacists reported a total of 785 DRPs (average of 6.5/patient). DRPs were more common among home-dwelling patients (7.2) than those in the assisted-living setting (5.5; P = 0.014) but were similar in nature. Inappropriate drug choices were the most common DRPs (17% of DRPs), involving most often hypnotics and sedatives. Also, indications with no treatment were common (16%), particularly those associated with cardiovascular diseases and osteoporosis. Pharmacists made 649 recommendations, 55% (n = 360) of which were accepted by physicians without revision. In 51% of DRPs (n = 403), CMRs resulted in change of drug therapy; stopping a drug was the most common change. CONCLUSION: Specially trained pharmacists were able to identify DRPs among elderly primary care patients by using a CMR procedure, and more than one-half of the identified DRPs led to medication changes. The pharmacists' special knowledge of geriatric pharmacotherapy and access to clinical patient data were crucial for recognizing DRPs.


Subject(s)
Assisted Living Facilities/statistics & numerical data , Community Pharmacy Services/organization & administration , Community Pharmacy Services/statistics & numerical data , Patient Care Planning/organization & administration , Patient Care Planning/statistics & numerical data , Residence Characteristics/statistics & numerical data , Aged , Aged, 80 and over , Female , Humans , Male , Retrospective Studies
15.
J Parkinsons Dis ; 11(3): 1023-1046, 2021.
Article in English | MEDLINE | ID: mdl-34024778

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. OBJECTIVE: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. METHODS: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. RESULTS: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. CONCLUSION: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Dopamine , Dopaminergic Neurons/metabolism , Glial Cell Line-Derived Neurotrophic Factor , Humans , Mice , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Proto-Oncogene Proteins c-ret , Rats , Substantia Nigra/metabolism
16.
J Neurosci ; 29(30): 9651-9, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19641128

ABSTRACT

Neurotrophic factors are promising candidates for the treatment of Parkinson's disease (PD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to a novel evolutionarily conserved family of neurotrophic factors. We examined whether MANF has neuroprotective and neurorestorative effect in an experimental model of PD in rats. We also studied the distribution and transportation of intrastriatally injected MANF in the brain and compared it with glial cell line-derived neurotrophic factor (GDNF). Unilateral lesion of nigrostriatal dopaminergic system was induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). Amphetamine-induced turning behavior was monitored up to 12 weeks after the unilateral lesion. The local diffusion at the injection site and transportation profiles of intrastriatally injected MANF and GDNF were studied by immunohistochemical detection of the unlabeled growth factors as well as by autoradiographic and gamma counting detection of (125)I-labeled trophic factors. Intrastriatally injected MANF protected nigrostriatal dopaminergic nerves from 6-OHDA-induced degeneration as evaluated by counting tyrosine hydroxylase (TH)-positive cell bodies in the substantia nigra (SN) and TH-positive fibers in the striatum. More importantly, MANF also restored the function of the nigrostriatal dopaminergic system when administered either 6 h before or 4 weeks after 6-OHDA administration in the striatum. MANF was distributed throughout the striatum more readily than GDNF. The mechanism of MANF action differs from that of GDNF because intrastriatally injected (125)I-MANF was transported to the frontal cortex, whereas (125)I-GDNF was transported to the SN. Our results suggest that MANF is readily distributed throughout the striatum and has significant therapeutic potential for the treatment of PD.


Subject(s)
Nerve Tissue Proteins/administration & dosage , Neuroprotective Agents/administration & dosage , Parkinson Disease, Secondary/drug therapy , Animals , Corpus Striatum/drug effects , Corpus Striatum/physiopathology , Disease Models, Animal , Dopamine/metabolism , Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Glial Cell Line-Derived Neurotrophic Factor/pharmacokinetics , Humans , Male , Motor Activity/drug effects , Nerve Degeneration/drug therapy , Nerve Growth Factors , Nerve Tissue Proteins/pharmacokinetics , Neurons/drug effects , Neurons/physiology , Neuroprotective Agents/pharmacokinetics , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Wistar , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Substantia Nigra/drug effects , Substantia Nigra/physiopathology , Time Factors
17.
Front Neurol Neurosci Res ; 1: 100004, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33479704

ABSTRACT

Parkinson's disease (PD) is an incurable neurodegenerative disorder affecting up to 10 million people in the world. Diagnostic motor symptoms of PD appear as a result of progressive degeneration and death of nigrostriatal dopamine neurons. Current PD treatments only relieve symptoms without halting the progression of the disease, and their use is complicated by severe adverse effects emerging as the disease progresses. Therefore, there is an urgent need for new therapies for PD management. We developed a small molecule compound, BT13, targeting receptor tyrosine kinase RET. RET is the signalling receptor for a known survival factor for dopamine neurons called glial cell line-derived neurotrophic factor (GDNF). Previously we showed that BT13 prevents the death of cultured dopamine neurons, stimulates dopamine release and activates pro-survival signalling cascades in naïve rodent brain. In the present study, we evaluate the effects of BT13 on motor imbalance and nigrostriatal dopamine neurons in a unilateral 6-hydroxydopamine rat model of PD. We show that BT13 alleviates motor dysfunction in experimental animals. Further studies are needed to make a conclusion whether BT13 can protect the integrity of the nigrostriatal dopamine system since even the positive control, GDNF protein, was unable to produce a clear neuroprotective effect in the model used in the present work. In contrast to GDNF, BT13 is able to cross the blood-brain barrier, which together with the ability to reduce motor symptoms of the disease makes it a valuable lead for further development as a potential disease-modifying agent to treat PD.

18.
ACS Med Chem Lett ; 11(5): 671-677, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435369

ABSTRACT

Targeting cytotoxic 4ß-phorbol esters toward cancer tissue was attempted by conjugating a 4ß-pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, which subsequently penetrate into cancer cells. The 4ß-phorbol esters were prepared from 4ß-phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme expressing cells was found.

19.
MethodsX ; 6: 2384-2395, 2019.
Article in English | MEDLINE | ID: mdl-31681539

ABSTRACT

In experimental deep brain stimulation of the subthalamic nucleus (STN HFS), stimulation currents just below the appearance threshold of stimulation-induced dyskinesias has often been used. The behavioral effect of STN HFS can be measured by the reversal of forelimb use asymmetry produced by hemiparkinsonism can be measured with the cylinder test among other tests. We used 18 Wistar rats with 6-hydroxydopamine induced hemiparkinsonism to test a customized scale to rate the severity of stimulation-induced dyskinesia; we then used these ratings to choose low and high stimulation currents. Subsequent cylinder tests showed that stimulation at the higher current, inducing mild and short-lived dyskinesias, was required for robust improvement in forelimb use, contradicting the use of currents below stimulation-induced dyskinesia threshold. It was also beneficial to separately count both all touches and first touches with the cylinder wall; this provided additional sensitivity and robustness to our results. •Scoring stimulation-induced dyskinesias can be used as a quantitative measure of dyskinesias and to choose stimulation currents.•Cylinder test scoring separately for both first and all touches can improve both sensitivity and reliability.•STN HFS at a current producing short-lived dyskinesias was required for robust improvement in forelimb use asymmetry.

20.
J Neurochem ; 107(3): 844-54, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18786163

ABSTRACT

Previously, we have shown that 7-week oral nicotine treatment enhances morphine-induced behaviors and dopaminergic activity in the mouse brain. In this study, we further characterized the nicotine-morphine interaction in the mesolimbic and nigrostriatal dopaminergic systems, as well as in the GABAergic control of these systems. In nicotine-pretreated mice, morphine-induced dopamine release in the caudate putamen and nucleus accumbens was significantly augmented, as measured by microdialysis. Chronic nicotine treatment did not change basal extracellular concentrations of dopamine and its metabolites in the caudate putamen and nucleus accumbens, nor did it affect the rate of dopamine synthesis, as assessed by 3-hydroxybenzylhydrazine dihydrochloride-induced DOPA accumulation. GABAergic control of dopaminergic activity was studied by measuring extracellular GABA in the presence of nipecotic acid, an inhibitor of GABA uptake. Acute (0.3 mg/kg or 0.5 mg/kg i.p.) and chronic nicotine, as well as morphine (15 mg/kg s.c.) in control mice decreased nipecotic acid-induced increase in extracellular GABA in the ventral tegmental area/substantia nigra (VTA/SN). In contrast, in nicotine-treated mice, morphine increased GABA levels in the presence of nipecotic acid. We did not find any alterations in GABA(B)-receptor function after chronic nicotine treatment. Thus, our data show that chronic nicotine treatment sensitizes dopaminergic systems to morphine and affects GABAergic systems in the VTA/SN.


Subject(s)
Brain/drug effects , Morphine/pharmacology , Narcotics/pharmacology , Neurotransmitter Agents/metabolism , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Animals , Brain/metabolism , Dihydroxyphenylalanine/metabolism , Dopamine/metabolism , Extracellular Fluid/metabolism , Homovanillic Acid/metabolism , Hydroxyindoleacetic Acid/metabolism , Male , Mice , Microdialysis , Motor Activity/drug effects , Time , gamma-Aminobutyric Acid/drug effects , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL