Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Appl Opt ; 60(25): G232-G242, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34613214

ABSTRACT

Although there has been progress in studying the electronic and optical properties of monolayer and near-monolayer (two-dimensional, 2D) MoS2 upon adatom adsorption and intercalation, understanding the underlying atomic-level behavior is lacking, particularly as related to the optical response. Alkali atom intercalation in 2D transition metal dichalcogenides (TMDs) is relevant to chemical exfoliation methods that are expected to enable large scale production. In this work, focusing on prototypical 2D MoS2, the adsorption and intercalation of Li, Na, K, and Ca adatoms were investigated for the 2H, 1T, and 1T' phases of the TMD by the first principles density functional theory in comparison to experimental characterization of 2H and 1T 2D MoS2 films. Our electronic structure calculations demonstrate significant charge transfer, influencing work function reductions of 1-1.5 eV. Furthermore, electrical conductivity calculations confirm the semiconducting versus metallic behavior. Calculations of the optical spectra, including excitonic effects using a many-body theoretical approach, indicate enhancement of the optical transmission upon phase change. Encouragingly, this is corroborated, in part, by the experimental measurements for the 2H and 1T phases having semiconducting and metallic behavior, respectively, thus motivating further experimental exploration. Overall, our calculations emphasize the potential impact of synthesis-relevant adatom incorporation in 2D MoS2 on the electronic and optical responses that comprise important considerations toward the development of devices such as photodetectors or the miniaturization of electroabsorption modulator components.

2.
Angew Chem Int Ed Engl ; 60(48): 25436-25444, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34549520

ABSTRACT

Lamellar phases of alkyldiacetylenes in which the alkyl chains lie parallel to the substrate represent a straightforward means for scalable 1-nm-resolution interfacial patterning. This capability has the potential for substantial impacts in nanoscale electronics, energy conversion, and biomaterials design. Polymerization is required to set the 1-nm functional patterns embedded in the monolayer, making it important to understand structure-function relationships for these on-surface reactions. Polymerization can be observed for certain monomers at the single-polymer scale using scanning probe microscopy. However, substantial restrictions on the systems that can be effectively characterized have limited utility. Here, using a new multi-scale approach, we identify a large, previously unreported difference in polymerization efficiency between the two most widely used commercial diynoic acids. We further identify a core design principle for maximizing polymerization efficiency in these on-surface reactions, generating a new monomer that also exhibits enhanced polymerization efficiency.

3.
Nano Lett ; 19(1): 158-164, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30484322

ABSTRACT

Ultrashort bunches of electrons, emitted from solid surfaces through excitation by ultrashort laser pulses, are an essential ingredient in advanced X-ray sources, and ultrafast electron diffraction and spectroscopy. Multiphoton photoemission using a noble metal as the photocathode material is typically used but more brightness is desired. Artificially structured metal photocathodes have been shown to enhance optical absorption via surface plasmon resonance but such an approach severely reduces the damage threshold in addition to requiring state-of-the-art facilities for photocathode fabrication. Here, we report ultrafast photoelectron emission from sidewalls of aligned single-wall carbon nanotubes. We utilized strong exciton resonances inherent in this prototypical one-dimensional material, and its excellent thermal conductivity and mechanical rigidity leading to a high damage threshold. We obtained unambiguous evidence for resonance-enhanced multiphoton photoemission processes with definite power-law behaviors. In addition, we observed strong polarization dependence and ultrashort photoelectron response time, both of which can be quantitatively explained by our model. These results firmly establish aligned single-wall carbon nanotube films as novel and promising ultrafast photocathode material.

4.
Faraday Discuss ; 219(0): 229-243, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31298259

ABSTRACT

Complex biomolecules, including carbohydrates, frequently have molecular surface footprints larger than those in broadly utilized standing phase alkanethiol self-assembled monolayers, yet would benefit from structured orientation and clustering interactions promoted by ordered monolayer lattices. Striped phase monolayers, in which alkyl chains extend across the substrate, have larger, more complex lattices: nm-wide stripes of headgroups with 0.5 or 1 nm lateral periodicity along the row, separated by wider (∼5 nm) stripes of exposed alkyl chains. These anisotropic interfacial patterns provide a potential route to controlled clustering of complex functional groups such as carbohydrates. Although the monolayers are not covalently bound to the substrate, assembly of functional alkanes containing an internal diyne allows such monolayers to be photopolymerized, increasing robustness. Here, we demonstrate that, with appropriate modifications, microcontact printing can be used to generate well-defined microscopic areas of striped phases of both single-chain and dual-chain amphiphiles (phospholipids), including one (phosphoinositol) with a carbohydrate in the headgroup. This approach generates hierarchical molecular-scale and microscale interfacial clustering of functional ligands, prototyping a strategy of potential relevance for glycobiology.


Subject(s)
Carbohydrates/chemistry , Phospholipids/chemistry , Alkanes/chemistry , Alkylation , Glycolipids/chemistry , Models, Molecular , Polymerization , Surface Properties , Surface-Active Agents/chemistry
5.
Plant Cell Environ ; 41(5): 898-907, 2018 05.
Article in English | MEDLINE | ID: mdl-28098349

ABSTRACT

Plants have evolved complex molecular, cellular and physiological mechanisms to respond to environmental stressors. Because of the inherent complexity of this response, genetic manipulation to substantially improve water deficit tolerance, particularly in agricultural crops, has been largely unsuccessful, as the improvements are frequently accompanied by slower growth and delayed reproduction. Here, we ectopically express two abiotic stress-responsive bZIP AREB/ABF transcription factor orthologs, Arabidopsis ABF3 and Gossypium hirsutum ABF2D, in G. hirsutum, to compare the effects of exogenous and endogenous AREB/ABF transgene overexpression on dehydration resilience. Our results show that ectopic expression of each of these orthologs increases dehydration resilience, although these increases are accompanied by slower growth. These phenotypic effects are proportional to the ectopic expression level in the GhABF2D transgenic plants, while the phenotypes of all of the AtABF3 transgenic plants are similar, largely independent of ectopic expression level, possibly indicating differential post-transcriptional regulation of these transgenes. Our results indicate that overexpression of exogenous and endogenous ABF homologs in G. hirsutum substantially increases drought resilience, primarily through stomatal regulation, negatively impacting transpiration and photosynthetic productivity.


Subject(s)
Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gossypium/physiology , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Crops, Agricultural , Droughts , Ectopic Gene Expression , Gossypium/genetics , Phenotype , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/physiology , Plant Transpiration/physiology , Plants, Genetically Modified , Stress, Physiological , Transcription Factors/genetics
6.
Langmuir ; 34(4): 1353-1362, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29341626

ABSTRACT

Noncovalent monolayer chemistries are often used to functionalize 2D materials. Nanoscopic ligand ordering has been widely demonstrated (e.g., lying-down lamellar phases of functional alkanes); however, combining this control with micro- and macroscopic patterning for practical applications remains a significant challenge. A few reports have demonstrated that standing phase Langmuir films on water can be converted into nanoscopic lying-down molecular domains on 2D substrates (e.g., graphite), using horizontal dipping (Langmuir-Schaefer, LS, transfer). Molecular patterns are known to form at scales up to millimeters in Langmuir films, suggesting the possibility of transforming such structures into functional patterns on 2D materials. However, to our knowledge, this approach has not been investigated, and the rules governing LS conversion are not well understood. In part, this is because the conversion process is mechanistically very different from classic LS transfer of standing phases; challenges also arise due to the need to characterize structure in noncovalently adsorbed ligand layers <0.5 nm thick, at scales ranging from millimeters to nanometers. Here, we show that scanning electron microscopy enables diynoic acid lying-down phases to be imaged across this range of scales; using this structural information, we establish conditions for LS conversion to create hierarchical microscopic and nanoscopic functional patterns. Such control opens the door to tailoring noncovalent surface chemistry of 2D materials to pattern local interactions with the environment.

7.
Langmuir ; 34(19): 5454-5463, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29708753

ABSTRACT

Polymerizable amphiphiles can be assembled into lying-down phases on 2D materials such as graphite and graphene to create chemically orthogonal surface patterns at 5-10 nm scales, locally modulating functionality of the 2D basal plane. Functionalization can be carried out through Langmuir-Schaefer conversion, in which a subset of molecules is transferred out of a standing phase film on water onto the 2D substrate. Here, we leverage differences in molecular structure to spatially control transfer at both nanoscopic and microscopic scales. We compare transfer properties of five different single- and dual-chain amphiphiles, demonstrating that those with strong lateral interactions (e.g., hydrogen-bonding networks) exhibit the lowest transfer efficiencies. Since molecular structures also influence microscopic domain morphologies in Langmuir films, we show that it is possible to transfer such microscale patterns, taking advantage of variations in the local transfer rates based on the structural heterogeneity in Langmuir films. Nanoscale domain morphologies also vary in ways that are consistent with predicted relative transfer and diffusion rates. These results suggest strategies to tailor noncovalent functionalization of 2D substrates through controlled LS transfer.

8.
Clin Genet ; 89(4): 495-500, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26126777

ABSTRACT

We describe a novel, inherited 16q13 microdeletion that removes cholesteryl ester transfer protein (CETP) and several nearby genes. The proband was originally referred for severe childhood-onset obesity and moderate developmental delay, but his fasting lipid profile revealed relatively high levels of high density lipoprotein cholesterol (HDL-C) and relatively low levels of low density lipoprotein cholesterol (LDL-C) for age, despite his obesity. Testing of first-degree relatives identified two other microdeletion carriers. Functional assays in affected individuals showed decreased CETP mRNA expression and enzymatic activity. This microdeletion may or may not be pathogenic for obesity and developmental delay, but based on the lipid profile, the functional studies, and the phenotype of other patients with loss-of-function mutations of CETP, we believe this microdeletion to be antipathogenic for cardiovascular disease.

9.
Cytometry A ; 87(5): 393-404, 2015 May.
Article in English | MEDLINE | ID: mdl-25652364

ABSTRACT

Experimental data from single-molecule DNA-protein experiments, such as experiments using optical traps or magnetic tweezers, typically contain steps, plateaus, or dwell regions that are obscured by thermal and other noise sources. We present a nonparametric method for detecting step-like features in noisy biological data sets. Our algorithm does not assume that the steps can be modeled as Heaviside functions or any particular parametric form. No assumptions about the noise source, such as whether the noise is Gaussian or colored, are made either. Instead, for detection of plateaus, the algorithm uses the novel method of analyzing a probability distribution function of the data values. The vast majority of previously published methods for step detection rely on statistical fitting of step functions with the flat segments linked by vertical segments. Our approach is intended for use on data which cannot be modelled as a series of step functions but applies to step functions as a special case. These type of data traces have, so far, been difficult to characterize effectively. We examine the performance of the algorithm through systematic simulation studies and illustrate the use of our algorithm to analyze single molecule DNA-protein micromanipulation experiments carried out by our laboratory. The simulation results and experimental validation suggest that our method is very robust, avoids overfitting, and functions effectively in the presence of noise sources characteristic of single molecule experiments.


Subject(s)
Biophysics/methods , Computer Simulation , DNA/chemistry , Proteins/chemistry , Algorithms
10.
Bioconjug Chem ; 26(8): 1687-91, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26056848

ABSTRACT

Bioorthogonal conjugation reactions such as strain-promoted azide-alkyne cycloaddition (SPAAC) have become increasingly popular in recent years, as they enable site-specific labeling of complex biomolecules. However, despite a number of improvements to cyclooctyne design, reaction rates for SPAAC remain significantly lower than those of the related copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Here we explore micellar catalysis as a means to increase reaction rate between a cyclooctyne and hydrophobic azide. We find that anionic and cationic surfactants provide the most efficient catalysis, with rate enhancements of up to 179-fold for reaction of benzyl azide with DIBAC cyclooctyne. Additionally, we find that the presence of surfactant can provide up to 51-fold selectivity for reaction with a hydrophobic over hydrophilic azide. A more modest, but still substantial, 11-fold rate enhancement is observed for micellar catalysis of the reaction between benzyl azide and a DIBAC-functionalized DNA sequence, demonstrating that micellar catalysis can be successfully applied to hydrophilic biomolecules. Together, these results demonstrate that micellar catalysis can provide higher conjugation yields in reduced time when using hydrophobic SPAAC reagents.


Subject(s)
Alkynes/chemistry , Azides/chemistry , Copper/chemistry , Micelles , Catalysis , Click Chemistry , Cycloaddition Reaction
11.
J Cell Biochem ; 115(1): 62-70, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23904193

ABSTRACT

Consumption of trans-unsaturated fatty acids promotes atherosclerosis, but whether degradation of fats in macrophages is altered by trans-unsaturated fatty acids is unknown. We compared the metabolism of oleate (C18:1Δ9-10 cis; (Z)-octadec-9-enoate), elaidate (C18:Δ9-10 trans; (E)-octadec-9-enoate), and stearate (C18:0, octadecanoate) in adherent peripheral human macrophages. Metabolism was followed by measurement of acylcarnitines in cell supernatants by MS/MS, determination of cellular fatty acid content by GC/MS, and assessment of ß-oxidation rates using radiolabeled fatty acids. Cells incubated for 44 h in 100 µM elaidate accumulated more unsaturated fatty acids, including both longer- and shorter-chain, and had reduced C18:0 relative to those incubated with oleate or stearate. Both C12:1 and C18:1 acylcarnitines accumulated in supernatants of macrophages exposed to trans fats. These results suggested ß-oxidation inhibition one reaction proximal to the trans bond. Comparison of [1-(14)C]oleate to [1-(14)C]elaidate catabolism showed that elaidate completed the first round of fatty acid ß-oxidation at rates comparable to oleate. Yet, in competitive ß-oxidation assays with [9,10-(3)H]oleate, tritium release rate decreased when unlabeled oleate was replaced by the same quantity of elaidate. These data show specific inhibition of monoenoic fat catabolism by elaidate that is not shared by other atherogenic fats.


Subject(s)
Macrophages/metabolism , Oleic Acid/pharmacology , Carnitine/analogs & derivatives , Carnitine/analysis , Carnitine/metabolism , Cells, Cultured , Fatty Acids/analysis , Fatty Acids/chemistry , Fatty Acids/pharmacology , Humans , Macrophages/drug effects , Oleic Acid/chemistry , Oleic Acid/metabolism , Oleic Acids , Oxidation-Reduction/drug effects , Plant Oils/pharmacology , Stearates/metabolism , Stearates/pharmacology , Tandem Mass Spectrometry
12.
J Appl Physiol (1985) ; 136(1): 151-157, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38059292

ABSTRACT

Acute heat exposure increases skeletal muscle blood flow in humans. However, the mechanisms mediating this hyperemic response remain unknown. The cyclooxygenase pathway is active in skeletal muscle, is heat sensitive, and contributes to cutaneous thermal hyperemia in young healthy humans. Therefore, the purpose of this study was to test the hypothesis that cyclooxygenase inhibition would attenuate blood flow in the vastus lateralis muscle during localized heating. Twelve participants (6 women) were studied on two separate occasions: 1) time control (i.e., no ibuprofen); and 2) ingestion of 800 mg ibuprofen, a nonselective cyclooxygenase inhibitor. Experiments were randomized, counter-balanced, and separated by at least 10 days. Pulsed short-wave diathermy was used to induce unilateral deep heating of the vastus lateralis for 90 min, whereas the contralateral leg served as a thermoneutral control. Microdialysis was utilized to bypass the cutaneous circulation and directly measure local blood flow in the vastus lateralis muscle of each leg via the ethanol washout technique. Heat exposure increased muscle temperature and local blood flow (both P < 0.01 vs. baseline). However, the thermal hyperemic response did not differ between control and ibuprofen conditions (P ≥ 0.2). Muscle temperature slightly decreased for the thermoneutral leg (P < 0.01 vs. baseline), yet local blood flow remained relatively unchanged across time for control and ibuprofen conditions (both P ≥ 0.7). Taken together, our data suggest that inhibition of cyclooxygenase-derived vasodilator prostanoids does not blunt thermal hyperemia in skeletal muscle of young healthy humans.NEW & NOTEWORTHY Acute heat exposure increases skeletal muscle blood flow in humans. However, the mechanisms mediating this hyperemic response remain unknown. Using a pharmacological approach combined with microdialysis, we found that thermal hyperemia in the vastus lateralis muscle was well maintained despite the successful inhibition of cyclooxygenase. Our results suggest that cyclooxygenase-derived vasodilator prostanoids do not contribute to thermal hyperemia in skeletal muscle of young healthy humans.


Subject(s)
Hyperemia , Humans , Female , Ibuprofen/pharmacology , Muscle, Skeletal/physiology , Vasodilator Agents/pharmacology , Cyclooxygenase 2 , Prostaglandins/pharmacology , Regional Blood Flow
13.
Clin Genet ; 83(2): 145-54, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22369279

ABSTRACT

Higher resolution whole-genome arrays facilitate the identification of smaller copy number variations (CNVs) and their integral genes contributing to autism and/or intellectual disability (ASD/ID). Our study describes the use of one of the highest resolution arrays, the Affymetrix(®) Cytogenetics 2.7M array, coupled with quantitative multiplex polymerase chain reaction (PCR) of short fluorescent fragments (QMPSF) for detection and validation of small CNVs. We studied 82 subjects with ASD and ID in total (30 in the validation and 52 in the application cohort) and detected putatively pathogenic CNVs in 6/52 cases from the application cohort. This included a 130-kb maternal duplication spanning exons 64-79 of the DMD gene which was found in a 3-year-old boy manifesting autism and mild neuromotor delays. Other pathogenic CNVs involved 4p14, 12q24.31, 14q32.31, 15q13.2-13.3, and 17p13.3. We established the optimal experimental conditions which, when applied to select small CNVs for QMPSF confirmation, reduced the false positive rate from 60% to 25%. Our work suggests that selection of small CNVs based on the function of integral genes, followed by review of array experimental parameters resulting in highest confirmation rate using multiplex PCR, may enhance the usefulness of higher resolution platforms for ASD and ID gene discovery.


Subject(s)
Autistic Disorder/genetics , Cytogenetic Analysis/methods , DNA Copy Number Variations , Intellectual Disability/genetics , Autistic Disorder/diagnosis , Cohort Studies , Genome, Human , Humans , Intellectual Disability/diagnosis , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction/methods
15.
Surg Neurol Int ; 13: 396, 2022.
Article in English | MEDLINE | ID: mdl-36128108

ABSTRACT

Background: Surgical management of atlantoaxial instability (AAI) in pediatric patients with Down syndrome is associated with high neurological morbidity. Moreover, Down syndrome cognitive impairment coupled to AAI removes traditional verbal communication to relay evolving symptoms and aid in neurologic examination. It is not clear whether surgical adjuncts can alter clinical outcomes in this vulnerable population. Case Description: Herein, we report the case of a 6-year-old patient with significant developmental delay and severe AAI that was successfully managed by stabilization with guidance of neurophysiologic investigations in the perioperative phase. Conclusion: Perioperative neurophysiologic monitoring is safe, useful, and reliable in pediatric patients with trisomy 21 undergoing cervical traction and occipitocervical instrumented fusion for AAI.

16.
Ann Allergy Asthma Immunol ; 107(6): 463-70; quiz 471, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22123374

ABSTRACT

OBJECTIVE: To provide a focused understanding of the uniqueness and special considerations of honeybee allergy. DATA SOURCES: A PubMed search using the keywords honeybee, allergy, and hypersensitivity yielded the initial relevant articles. Additional significant sources cited in the reference lists of the initial articles were also used. STUDY SELECTION: More than 130 articles were reviewed, and the most relevant references were selected for inclusion in this article. RESULTS: The honeybee differs from other flying Hymenoptera from both an entomologic and allergic standpoint. The entomology literature is not often consulted by the allergist when addressing avoidance of honeybees. Beekeepers are a particular population at risk for honeybee exposure and allergy. Venom composition, sting mechanism, diagnostic evaluation, and immunotherapy efficacy and safety all have unique considerations specific to the honeybee. CONCLUSIONS: Honeybee is a significant cause of venom hypersensitivity. By understanding unique behaviors of honeybees, proper avoidance measures may be addressed with patients. Honeybee venom is complex, and the delivery mechanism provides for a large but often variable amount of injected venom. Diagnosis of honeybee allergy by imperfect skin and serologic testing further complicated by cross-reactivity is often difficult. Generally, honeybee immunotherapy is less safe and less effective than for other flying Hymenoptera. Efforts to improve testing and immunotherapy are under way.


Subject(s)
Allergens/immunology , Bee Venoms/immunology , Bees/immunology , Hypersensitivity, Immediate/immunology , Insect Bites and Stings/immunology , Animals , Humans , Hypersensitivity, Immediate/therapy , Immunotherapy/methods , Immunotherapy/standards , Insect Bites and Stings/epidemiology , Insect Bites and Stings/therapy
17.
RSC Adv ; 11(19): 11702-11713, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423612

ABSTRACT

The interfacial contact between TiO2 and graphitic carbon in a hybrid composite plays a critical role in electron transfer behavior, and in turn, its photocatalytic efficiency. Herein, we report a new approach for improving the interfacial contact and delaying charge carrier recombination in the hybrid by wrapping short single-wall carbon nanotubes (SWCNTs) on TiO2 particles (100 nm) via a hydration-condensation technique. Short SWCNTs with an average length of 125 ± 90 nm were obtained from an ultrasonication-assisted cutting process of pristine SWCNTs (1-3 µm in length). In comparison to conventional TiO2-SWCNT composites synthesized from long SWCNTs (1.2 ± 0.7 µm), TiO2 wrapped with short SWCNTs showed longer lifetimes of photogenerated electrons and holes, as well as a superior photocatalytic activity in the gas-phase degradation of acetaldehyde. In addition, upon comparison with a TiO2-nanographene "quasi-core-shell" structure, TiO2-short SWCNT structures offer better electron-capturing efficiency and slightly higher photocatalytic performance, revealing the impact of the dimensions of graphitic structures on the interfacial transfer of electrons and light penetration to TiO2. The engineering of the TiO2-SWCNT structure is expected to benefit photocatalytic degradation of other volatile organic compounds, and provide alternative pathways to further improve the efficiency of other carbon-based photocatalysts.

18.
ACS Nano ; 15(6): 10275-10285, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33998802

ABSTRACT

Nanocrystals are often synthesized using technical grade reagents such as oleylamine (OLAm), which contains a blend of 9-cis-octadeceneamine with trans-unsaturated and saturated amines. Here, we show that gold nanowires (AuNWs) synthesized with OLAm ligands undergo thermal transitions in interfacial assembly (ribbon vs. nematic); transition temperatures vary widely with the batch of OLAm used for synthesis. Mass spectra reveal that higher-temperature AuNW assembly transitions are correlated with an increased abundance of trans and saturated chains in certain blends. DSC thermograms show that both pure (synthesized) and technical-grade OLAm have primary melting transitions near -5 °C (20-30 °C lower than the literature melting temperature range of OLAm). A second, broader melting transition (in the previous reported melting range) appears in technical grade blends; its temperature varies with the abundance of trans and saturated chains. Our findings illustrate that, similar to biological membranes, blends of alkyl chains can be used to generate mesoscopic hierarchical nanocrystal assembly, particularly at interfaces that further modulate transition temperatures.


Subject(s)
Nanowires , Amines , Gold , Temperature
19.
ACS Nano ; 15(1): 1426-1435, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33410675

ABSTRACT

Decades of work in surface science have established the ability to functionalize clean inorganic surfaces with sub-nm precision, but for many applications, it would be useful to provide similar control over the surface chemistry of amorphous materials such as elastomers. Here, we show that striped monolayers of diyne amphiphiles, assembled on graphite and photopolymerized, can be covalently transferred to polydimethylsiloxane (PDMS), an elastomer common in applications including microfluidics, soft robotics, wearable electronics, and cell culture. This process creates precision polymer films <1 nm thick, with 1 nm wide functional patterns, which control interfacial wetting and reactivity, and template adsorption of flexible, ultranarrow Au nanowires. The polydiacetylenes exhibit polarized fluorescence emission, revealing polymer location, orientation, and environment, and resist engulfment, a common problem in PDMS functionalization. These findings illustrate a route for patterning surface chemistry below the length scale of heterogeneity in an amorphous material.

20.
JBJS Case Connect ; 11(1): e20.00228, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33502138

ABSTRACT

CASE: A 41-year-old man sustained occipitocervical dislocation (OCD) and atlantoaxial dislocation (AAD) injuries in a motor vehicle collision. These injuries were treated nonoperatively with a hard cervical collar and activity restrictions with an excellent result at 4-year follow-up. CONCLUSION: OCD and AAD injuries require prompt diagnosis and immobilization. Standard of care for coexisting injuries is occipitocervical fusion; however, some patients have coexisting injuries which may prevent operative treatment. These polytrauma patients require a creative nonoperative approach with close follow-up to avoid neurologic decline.


Subject(s)
Atlanto-Axial Joint , Joint Dislocations , Multiple Trauma , Spinal Fusion , Accidents, Traffic , Adult , Atlanto-Axial Joint/diagnostic imaging , Atlanto-Axial Joint/injuries , Atlanto-Axial Joint/surgery , Humans , Joint Dislocations/diagnostic imaging , Joint Dislocations/surgery , Male
SELECTION OF CITATIONS
SEARCH DETAIL