Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Sep Sci ; 47(1): e2300678, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994215

ABSTRACT

Hippomarathrum scabrum L. is an endemic medicinal plant in Turkey; however, there have been few studies investigating the phytochemistry and biological properties of these plants has not been investigated. The aim of this work is to determine the chemical composition of different extracts (extracts obtained by using supercritical carbon dioxide extraction, accelerated solvent extraction, homogenizer-assisted extraction, microwave-assisted extraction, and ultrasound-assisted extraction from Hippomarathrum scabrum L., and evaluate their biological properties. The analysis revealed that 5-O-caffeoylquinic acid, rutin, and isorhamnetin 3-O-rutinoside were the main bioactive compounds. The extract obtained by accelerated extraction contains the highest concentration of 5-O-Caffeoylquinic acid (7616.74 ± 63.09 mg/kg dry extract) followed by the extract obtained by homogenizer-assisted extraction (6682.53 ± 13.04 mg/kg dry extract). In antioxidant tests, all extracts expressed significant antioxidant activity. Also, cytotoxic and anticancer effects of these plant extracts were detected in the human prostate cancer cell line. Intrinsic apoptotic genes were up-regulated and anti-apoptotic genes were down-regulated in human prostate cancer cells after inhibition concentration dose treatment. The findings are promising, and suggest the use of these plant extracts could be used as natural sources with different biological activities, as well as anticancer agents.


Subject(s)
Antioxidants , Chlorogenic Acid/analogs & derivatives , Prostatic Neoplasms , Quinic Acid/analogs & derivatives , Male , Humans , Antioxidants/analysis , Plant Extracts/chemistry , Plant Components, Aerial/chemistry
2.
Arch Pharm (Weinheim) ; 357(2): e2300528, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974540

ABSTRACT

The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.


Subject(s)
Stachys , Stachys/chemistry , Plant Extracts/chemistry , Butyrylcholinesterase , Receptor for Advanced Glycation End Products , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Glycosides , Ethanol
3.
Arch Pharm (Weinheim) ; : e2400194, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877616

ABSTRACT

Tanacetum nitens ( Boiss. & Noë)  Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.

4.
Amino Acids ; 55(12): 1709-1726, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37367966

ABSTRACT

Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.


Subject(s)
Histone Deacetylase Inhibitors , Molecular Dynamics Simulation , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Molecular Docking Simulation , Ligands , Quantitative Structure-Activity Relationship
5.
Amino Acids ; 55(5): 579-593, 2023 May.
Article in English | MEDLINE | ID: mdl-36781452

ABSTRACT

Histone deacetylases are well-established target enzymes involved in the pathology of different diseases including cancer and neurodegenerative disorders. The approved HDAC inhibitor drugs are associated with cellular toxicities. Different phenolic compounds have been shown to possess inhibitory activities against HDACs and are, therefore, considered safer alternatives to synthetic compounds. Here, we elucidated the binding mode and calculated the binding propensity of some of the top phenolic compounds against different isoforms representing different classes of Zn2+ ion-containing HDACs using the molecular docking approach. Our data reaffirmed the activity of the studied phenolic compounds against HDACs. Binding interaction analysis suggested that these compounds can block the activity of HDACs with or without binding to the active site zinc metal ion. Furthermore, molecular dynamics (MD) simulations were carried out on the selected crystal and docking complexes of each selected HDAC isoform. Analysis of root-mean-square displacement (RMSD) showed that the phenolic compounds demonstrated a stable binding mode over 50 ns in a way that is comparable to the cocrystal ligands. Together, these findings can aid future efforts in the search for natural inhibitors of HDACs.


Subject(s)
Histone Deacetylase Inhibitors , Molecular Dynamics Simulation , Molecular Docking Simulation , Histone Deacetylase Inhibitors/pharmacology , Protein Isoforms/chemistry , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Histone Deacetylase 1/chemistry , Histone Deacetylase 1/metabolism
6.
Amino Acids ; 55(12): 1729-1743, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37517044

ABSTRACT

Adenosine deaminase (ADA) is a Zn2+-containing enzyme that catalyzes the irreversible deamination of adenosine to inosine or deoxyadenosine to deoxyinosine. In addition to this enzymatic function, ADA mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. ADA is implicated in cardiovascular pathologies such as atherosclerosis and certain types of cancers, including lymphoma and leukemia. To date, only two drugs (pentostatin and cladribine) have been approved for the treatment of hairy cell leukemia. In search of natural ADA inhibitors, we demonstrated the binding of selected phenolic compounds to the active site of ADA using molecular docking and molecular dynamics simulation. Our results show that phenolic compounds (chlorogenic acid, quercetin, and hyperoside) stabilized the ADA complex by forming persistent interactions with the catalytically essential Zn2+ ion. Furthermore, MM-GBSA ligand binding affinity calculations revealed that hyperoside had a comparable binding energy score (ΔG = - 46.56 ± 8.26 kcal/mol) to that of the cocrystal ligand in the ADA crystal structure (PDB ID: 1O5R) (ΔG = - 51.97 ± 4.70 kcal/mol). Similarly, chlorogenic acid exhibited a binding energy score (ΔG = - 18.76 ± 4.60 kcal/mol) comparable to those of the two approved ADA inhibitor drugs pentostatin (ΔG = - 14.54 ± 2.25 kcal/mol) and cladribine (ΔG = - 25.52 ± 4.10 kcal/mol) while quercetin was found to have modest binding affinity (ΔG = - 8.85 ± 7.32 kcal/mol). This study provides insights into the possible inhibitory potential of these phenolic compounds against ADA.


Subject(s)
Adenosine Deaminase Inhibitors , Pentostatin , Adenosine Deaminase Inhibitors/pharmacology , Adenosine Deaminase Inhibitors/chemistry , Molecular Docking Simulation , Quercetin/pharmacology , Cladribine , Ligands , Chlorogenic Acid , Molecular Dynamics Simulation
7.
Mol Biol Rep ; 50(8): 7055-7067, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392288

ABSTRACT

Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.


Subject(s)
Bacterial Infections , Bacteriophages , Phage Therapy , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriophages/genetics , Drug Resistance, Bacterial/genetics , Bacteria
8.
Chem Biodivers ; 20(8): e202300411, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37357831

ABSTRACT

Faced with the serious consequences resulting from the abusive and repeated use of synthetic chemicals, today rethinking crop protection is more than necessary. It is in this context that the essential oils of the Lamiaceae Ocimum gratissimum and Ocimum canum, the Poaceae Cymbopogon citratus and nardus and a Rutaceae Citrus sp. of known chemical compositions were experimented. The evaluation of the larvicidal potential of the essential oils was done by the method of topical application of the test solutions, on the L1-L2 stage larvae from the first generation of S. frugiperda obtained after rearing in an air-conditioned room. Lethal concentrations (LC10 , LC50 and LC90 ) were determined after 48 h. After assessing the larvicidal potential of essential oils, molecular docking was carried out to study protein-ligand interactions and their propensity to bind to insect enzyme sites (AChE). The essential oil of O. gratissimum was the most effective with the lowest lethal concentrations (LC10 =0.91 %, LC50 =1.91 % and LC90 =3.92 %). The least toxic oil to larvae was Citrus sp. (LC10 =5.44 %, LC50 =20.50 % and LC90 =77.41 %). Molecular docking revealed that p-cymene and thymol from O. gratissimum essential oil are structurally similar and bind to the AChE active site via predominantly hydrophobic interactions and a H-bond with Tyr374 in the case of thymol. The essential oil of O. gratissimum constitutes a potential candidate for the development of biological insecticides for the fight against insect pests and for the protection of the environment.


Subject(s)
Insecticides , Ocimum , Oils, Volatile , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Spodoptera , Plant Oils/chemistry , Molecular Docking Simulation , Thymol/pharmacology , Cote d'Ivoire , Ocimum/chemistry , Insecticides/pharmacology , Larva
9.
Chem Biodivers ; 20(8): e202300547, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37306942

ABSTRACT

Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.


Subject(s)
Antioxidants , Artemisia annua , Antioxidants/chemistry , Hexanes , Plant Extracts/chemistry , Monophenol Monooxygenase , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Phenols/pharmacology , Inflammation/drug therapy , Water , Ethanol
10.
Arch Pharm (Weinheim) ; 356(12): e2300444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37754205

ABSTRACT

The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that É£-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.


Subject(s)
Antioxidants , Hexanes , Antioxidants/pharmacology , Antioxidants/chemistry , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Hexanes/analysis , Methanol/analysis , Butyrylcholinesterase , Acetylcholinesterase , Tandem Mass Spectrometry , Plant Extracts/chemistry , Structure-Activity Relationship
11.
Mol Divers ; 26(2): 1005-1016, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33846894

ABSTRACT

Methionine aminopeptidase (MetAP2) is a metal-containing enzyme that removes initiator methionine from the N-terminus of a newly synthesized protein. Inhibition of the enzyme is crucial in diminishing cancer growth and metastasis. Fumagillin-a natural irreversible inhibitor of MetAP2-and its derivatives are used as potent MetAP2 inhibitors. However, because of their adverse effects, none of them has progressed to clinical studies. In search for potential reversible inhibitors, we built structure-based pharmacophore models using the crystal structure of MetAP2 complexed with fumagillin (PDB ID: 1BOA). The pharmacophore models were validated using Gunner-Henry scoring method. The best pharmacophore consisting of 1 H-bond donor, 1 H-bond acceptor, and 3 hydrophobic features was used to conduct pharmacophore-based virtual screening of ZINC15 database against MetAP2. The top 10 compounds with pharmacophore fit values > 3.00 were selected for further analysis. These compounds were subjected to absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction and found to have druglike properties. Furthermore, molecular docking calculations was performed on these hits using AutoDock4 to predict their binding mode and binding energy. Three diverse compounds: ZINC000014903160, ZINC000040174591, and ZINC000409110720 with respective binding energy/docking scores of - 9.22, - 9.21, and -817 kcal/mol, were submitted to 100 ns (MD) simulations using Nanoscale MD (NAMD) software. The compounds showed stable binding mode over time. Therefore, they may serve as a scaffold for further computational and experimental optimization toward the design of more potent and safer MetAP2 inhibitors.


Subject(s)
Molecular Dynamics Simulation , Neoplasms , Aminopeptidases , Humans , Methionine , Molecular Docking Simulation
12.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080355

ABSTRACT

Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of leaf methanolic extracts of C. fistula L., C. grandis L., S. alexandrina Mill., and S. italica Mill. The two Cassia spp. contained higher total polyphenolic content (42.23-49.75 mg GAE/g) than the two Senna spp., and C. fistula had significantly (p ˂ 0.05) the highest concentration. On the other hand, the Senna spp. showed higher total flavonoid content (41.47-59.24 mg rutin equivalent per g of extract) than that found in the two Cassia spp., and S. alexandrina significantly (p ˂ 0.05) accumulated the highest amount. HPLC-MS/MS analysis of 38 selected bioactive compounds showed that the majority of compounds were identified in the four species, but with sharp variations in their concentrations. C. fistula was dominated by epicatechin (8928.75 µg/g), C. grandis by kaempferol-3-glucoside (47,360.04 µg/g), while rutin was the major compound in S. italica (17,285.02 µg/g) and S. alexandrina (6381.85). The methanolic extracts of the two Cassia species exerted significantly (p ˂ 0.05) higher antiradical activity, metal reducing capacity, and total antioxidant activity than that recorded from the two Senna species' methanolic extracts, and C. fistula displayed significantly (p ˂ 0.05) the highest values. C. grandis significantly (p ˂ 0.05) exhibited the highest metal chelating power. The results of the enzyme inhibition activity showed that the four species possessed anti-AChE activity, and the highest value, but not significantly (p ≥ 0.05) different from those obtained by the two Cassia spp., was exerted by S. alexandrina. The Cassia spp. exhibited significantly (p ˂ 0.05) higher anti-BChE and anti-Tyr properties than the Senna spp., and C. grandise revealed significantly (p ˂ 0.05) the highest values. C. grandise revealed significantly (p ˂ 0.05) the highest α- amylase inhibition, while the four species had more or less the same effect against the α-glucosidase enzyme. Multivariate analysis and in silico studies showed that many of the identified phenols may play key roles as antioxidant and enzyme inhibitory properties. Thus, these Cassia and Senna species could be a promising source of natural bioactive agents with beneficial effects for human health.


Subject(s)
Cassia , Senna Plant , Antioxidants/pharmacology , Methanol , Phenols , Plant Extracts/pharmacology , Plant Leaves , Rutin/pharmacology , Tandem Mass Spectrometry , alpha-Amylases
13.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897865

ABSTRACT

Spathodea campanulata is an important medicinal plant with traditional uses in the tropical zone. In the current work, we aimed to determine the chemical profiles and biological effects of extracts (methanolic and infusion (water)) from the leaves and stem bark of S. campanulata. The chemical components of the tested extracts were identified using LC-ESI-QTOF-MS. Biological effects were tested in terms of antioxidant (radical scavenging, reducing power, and metal chelating), enzyme inhibitory (cholinesterase, amylase, glucosidase, and tyrosinase), antineoplastic, and antiviral activities. Fifty-seven components were identified in the tested extracts, including iridoids, flavonoids, and phenolic acids as the main constituents. In general, the leaves-MeOH extract was the most active in the antioxidant assays (DPPH, ABTS, CUPRAC, FRAP, metal chelating, and phosphomolybdenum). Antineoplastic effects were tested in normal (VERO cell line) and cancer cell lines (FaDu, HeLa, and RKO). The leaf infusion, as well as the extracts obtained from stem bark, showed antineoplastic activity (CC50 119.03-222.07 µg/mL). Antiviral effects were tested against HHV-1 and CVB3, and the leaf methanolic extract (500 µg/mL) exerted antiviral activity towards HHV-1, inhibiting the viral-induced cytopathic effect and reducing the viral infectious titre by 5.11 log and viral load by 1.45 log. In addition, molecular docking was performed to understand the interactions between selected chemical components and viral targets (HSV-1 DNA polymerase, HSV-1 protease, and HSV-1 thymidine kinase). The results presented suggest that S. campanulata may be a bright spot in moving from natural sources to industrial applications, including novel drugs, cosmeceuticals, and nutraceuticals.


Subject(s)
Bignoniaceae , Pharmacy , Antioxidants/chemistry , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Bignoniaceae/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
Molecules ; 27(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956963

ABSTRACT

The bioactive content, antioxidant properties, and enzyme inhibition properties of extracts of Alcea fasciculiflora from Turkey prepared with different solvents (water, methanol, ethyl acetate) and extraction methods (maceration, soxhlet, homogenizer assisted extraction, and ultrasound assisted extraction) were examined in this study. UHPLC-HRMS analysis detected or annotated a total of 50 compounds in A. fasciculiflora extracts, including 18 hydroxybenzoic and hydroxycinnamic acids, 7 Hexaric acids, 7 Coumarins, 15 Flavonoids, and 3 hydroxycinnamic acid amides. The extracts had phenolic and flavonoid levels ranging from 14.25 to 24.87 mg GAE/g and 1.68 to 25.26 mg RE/g, respectively, in the analysis. Both DPPH and ABTS tests revealed radical scavenging capabilities (between 2.63 and 35.33 mg TE/g and between 13.46 and 76.27 mg TE/g, respectively). The extracts had reducing properties (CUPRAC: 40.38-78 TE/g and FRAP: 17.51-42.58 TE/g). The extracts showed metal chelating activity (18.28-46.71 mg EDTAE/g) as well as total antioxidant capacity (phosphomolybdenum test) (0.90-2.12 mmol TE/g). DPPH, ABTS, FRAP, and metal chelating tests indicated the water extracts to be the best antioxidants, while the ethyl acetate extracts had the highest overall antioxidant capacity regardless of the extraction technique. Furthermore, anti-acetylcholinesterase activity was identified in all extracts (0.17-2.80 mg GALAE/g). The water extracts and the ultrasound-assisted ethyl acetate extract were inert against butyrylcholinesterase, but the other extracts showed anti-butyrylcholinesterase activity (1.17-5.80 mg GALAE/g). Tyrosine inhibitory action was identified in all extracts (1.79-58.93 mg KAE/g), with the most effective methanolic extracts. Only the ethyl acetate and methanolic extracts produced by maceration and homogenizer aided extraction showed glucosidase inhibition (0.11-1.11 mmol ACAE/g). These findings showed the overall bioactivity of the different extracts of A. fasciculiflora and provided an overview of the combination of solvent type and extraction method that could yield bioactive profile and pharmacological properties of interest and hence, could be a useful reference for future studies on this species.


Subject(s)
Plant Extracts , Solvents , Acetates/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Methanol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solvents/chemistry , Turkey , Water/chemistry
15.
Molecules ; 27(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36558163

ABSTRACT

In this study, the methanolic and infusion extracts of two species, Thymbra capitata and Thymus sipyleus subsp. rosulans, were tested for their chemical composition and biological abilities (antioxidant, enzyme inhibitory and anti-inflammatory effects). The extracts yielded total phenolic and flavonoid contents in the range of 83.43-127.52 mg GAE/g and 9.41-46.34 mg RE/g, respectively. HPLC analysis revealed rosmarinic acid to be a major component of the studied extracts (15.85-26.43%). The best ABTS radical scavenging ability was observed in the methanol extract of T. capitata with 379.11 mg TE/g, followed by in the methanol extract of T. sipylus (360.93 mg TE/g). In the CUPRAC assay, the highest reducing ability was also found in the methanol extract of T. capitata with 802.22 mg TE/g. The phosphomolybdenum ability ranged from 2.39 to 3.61 mmol TE/g. In terms of tyrosinase inhibitory effects, the tested methanol extracts (83.18-89.66 mg KAE/g) were higher than the tested water extracts (18.74-19.11 mg KAE/g). Regarding the BChE inhibitory effects, the methanol extracts were active on the enzyme while the water extracts showed no inhibitory effect on it. Overall, the methanolic extracts showed better enzyme inhibition compared to the infusion extracts. Molecular docking also showed the selected exhibited potential binding affinities with all enzymes, with a preference for cholinesterases. Additionally, the extracts were effective in attenuating the LPS-induced increase in COX-2 and IL-6 gene expression in isolated colon, thus indicating promising anti-inflammatory effects. The preliminary results of this study suggest that these species are good natural sources of antioxidants and also provide some scope as enzyme inhibitors, most likely due to their bioactive contents such as phenolic acids, and thus can be exploited for different applications related to health promotion and disease prevention.


Subject(s)
Lamiaceae , Thymus Plant , Molecular Docking Simulation , Methanol/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Water , Anti-Inflammatory Agents/pharmacology
16.
J Cosmet Laser Ther ; 19(2): 109-113, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27775451

ABSTRACT

Thermal effect of dual wavelength (980 and 1064 nm) laser application in skin incision closure was assessed on 18 male and female Wister rats. 1-cm-long incisions were made on the shaved dorsal region of 220-250 g animals. The incisions were closed by laser irradiation at 1 W and exposure time, 5 seconds in continuous-wave mode (CW) and 1 W and exposure time, 10 seconds in pulsed mode to deliver total energies of 5 J and 10 J per spot onto the incisions, respectively. Animals from each group were sacrificed at 0th, 4th, and 7th days and the skin samples of the weld area were excised for histological analysis using Hematoxylin and Eosin (H & E) stain. Mean thermally altered area (TAA) of CW-mode laser-treated groups was found to increase significantly (p < 0.05) compared with pulsed mode laser treated group at 0th and 4th days post-irradiation while no significant difference (p > 0.05) was statistically found at 7th day post-irradiation. Moreover, tighter closure was observed with CW group at 7th day post-irradiation. We thus conclude that 1 W, 5 J for 5 seconds CW mode laser application of 980 and 1064 nm combined beam form in skin incision closure was found to have absolute wound healing capability with minimal thermal alteration.


Subject(s)
Laser Therapy/methods , Skin/radiation effects , Wound Healing/radiation effects , Animals , Female , Male , Rats , Rats, Wistar
17.
Article in English | MEDLINE | ID: mdl-38909275

ABSTRACT

Benzene sulfonamides are an important biological substituent for several activities. In this study, hybridization of benzene sulfonamide with piperazine derivatives were investigated for their antioxidant capacity and enzyme inhibitory potencies. Six molecules were synthesized and characterized. DPPH, ABTS, FRAP, CUPRAC, chelating and phosphomolybdemum assays were applied to evaluate antioxidant capacities. Results show that compounds have high antioxidant capacity and compound 4 has the best antioxidant activity among them. Compound 4 has higher antioxidant activity than references for FRAP (IC50: 0.08 mM), CUPRAC (IC50: 0.21 mM) and phosphomolybdenum (IC50: 0.22 mM) assays. Besides this, compound 4 has moderate DPPH and ABTS antioxidant capacity. Furthermore, enzyme inhibition activities of these molecules were investigated against AChE, BChE, tyrosinase, α-amylase and α-glucosidase enzymes. It was revealed that all compounds have good enzyme inhibitory potential except for α-amylase enzyme. The best inhibitory activities were observed for AChE with compound 5 the same value (IC50: 1.003 mM), for BChE with compounds 2 and 5 the same value (IC50: 1.008 mM), for tyrosinase compound 4 (IC50: 1.19 mM), and for α-glucosidase with compound 3 (IC50: 1.000 mM). Docking studies have been conducted with these molecules, and the results correlate well with the inhibitory assays.

18.
Future Med Chem ; 16(11): 1075-1085, 2024.
Article in English | MEDLINE | ID: mdl-38916565

ABSTRACT

Aim: A highly efficient one-step method has been developed for the synthesis of benzofuranyl derivatives from 2-benzoylcyclohexane-1-carboxylic acid derivatives using chlorosulfonyl isocyanate. This novel method provides a practical, cost-effective and efficient approach. Materials & methods: The inhibitory effects of benzofuranyl derivatives on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes were investigated. Ki values were determined to range from 0.009 to 0.61 µM for AChE and 0.28 to 1.60 µM for BChE. Molecular docking analysis provided insights into the interaction modes and binding patterns of these compounds with AChE and BChE. Conclusion: Kinetic findings of our study suggest that some of our compounds exhibited more effective low micromolar inhibition compared with the reference, and these derivatives could be used to design more powerful agents.


[Box: see text].


Subject(s)
Acetylcholinesterase , Benzofurans , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Benzofurans/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Humans , Structure-Activity Relationship , Kinetics , Molecular Structure
19.
Fitoterapia ; 177: 106115, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977255

ABSTRACT

This study was designed to investigate chemical composition and biological activities of the Anthriscus cerefolium methanolic extract. Chemical characterization of the extracts was performed by LC-HRMS/MS analysis. Antimicrobial activities of the extract were investigated on six bacteria and eight fungi while antioxidant activity was assessed by six different assays. Anti-enzymatic activity of the methanolic extract was tested on five enzymes associated with therapy of neurodegenerative diseases and diabetes mellitus type 2. Cytotoxic properties of the extract were tested on human immortalized keratinocytes (HaCaT) and tumor cell lines (SiHa, MCF7, HepG2). Anti-inflammatory activity of the extract was assessed on bacteria mediated inflammation model using HaCaT cell line. Molecular docking studies of enzymes and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis were performed. The results showed that the obtained extract was rich in phenolic compounds (a total of seventy-two were identified), with malonyl-1,4-O-dicaffeoylquinic acid and 3,5-O-dicaffeoylquinic acid dominating in the sample. The extract expressed antimicrobial, antioxidant, anti-enzymatic, cytotoxic and anti-inflammatory properties. The identified compounds demonstrated strong binding to the acetylcholinesterase (AChE) and to a lesser extent, to the butyrylcholinesterase (BChE), glucosidase, amylase, and modestly, to tyrosinase. KEGG pathway analysis has shown that the certain phenolic compounds may be related to anti-tumor, anti-inflammatory and anti-microbial activities of the extract. The data obtained suggest that phenolic compounds of the extract and their mixtures should be considered for future research as ingredients in pharmaceutical and nutraceutical formulations.

20.
Article in English | MEDLINE | ID: mdl-38558274

ABSTRACT

The present study aimed to investigate the chemical profile, antioxidant, and enzyme inhibition properties of extracts from fruits and aerial parts (leaves and twigs) of Tamarix aphylla and T. senegalensis. Hexane, dichloromethane, ethyl acetate (EtOAc), and methanol extracts were prepared sequentially by maceration. Results revealed that EtOAc extracts of T. senegalensis and T. aphylla fruits contained the highest total phenolic content (113.74 and 111.21 mg GAE/g) while that of T. senegalensis (38.47 mg RE/g) recorded the highest total flavonoids content. Among the quantified compounds; ellagic, gallic, 3-hydroxybenzoic, caffeic, syringic, p-coumaric acids, isorhamnetin, procyanidin B2, and kaempferol were the most abundant compounds in the two species. EtOAc extracts of the two organs of T. senegalensis in addition to MeOH extract of T. aphylla aerial parts displayed the highest chelating power (21.00-21.30 mg EDTAE/g, p > 0.05). The highest anti-AChE (3.11 mg GALAE/g) and anti-BChE (3.62 mg GALAE/g) activities were recorded from the hexane and EtOAc extracts of T. senegalensis aerial parts and fruits, respectively. EtOAc extracts of the fruits of the two species exerted the highest anti-tyrosinase (anti-Tyr) activity (99.44 and 98.65 mg KAE/g, p > 0.05). Also, the EtOAc extracts of the both organs of the two species exhibited highest anti-glucosidase activity (0.88-0.90 mmol ACAE/g, p > 0.05) while the best anti-α-amylase activity was recorded from the dichloromethane extract of T. senegalensis fruits (0.74 mmol ACAE/g). In this study, network pharmacology was employed to examine the connection between compounds from Tamarix and their potential effectiveness against Alzheimer's disease. The compounds demonstrated potential interactions with pivotal genes including APP, GSK3B, and CDK5, indicating a therapeutic potential. Molecular docking was carried out to understand the binding mode and interaction of the compounds with the target enzymes. Key interactions observed, such as H-bonds, promoted the binding, and weaker ones, such as van der Waals attractions, reinforced it. These findings suggest that these two Tamarix species possess bioactive properties with health-promoting effects.

SELECTION OF CITATIONS
SEARCH DETAIL