Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Biosci Biotechnol Biochem ; 86(8): 1031-1040, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35612987

ABSTRACT

The basidiomycetous yeast Pseudozyma antarctica, which has multiple auxotrophic markers, was constructed, without inserting a foreign gene, as the host strain for the introduction of multiple useful genes. P. antarctica was more resistant to ultraviolet (UV) irradiation than the model yeast Saccharomyces cerevisiae, and a Paura3 mutant (C867T) was obtained after 3 min of UV exposure. A uracil-auxotrophic marker (URA3) recycling system developed in ascomycetous yeasts and fungi was applied to the P. antarctica Paura3 strain. The PaLYS12 and PaADE2 loci were disrupted via site-directed homologous recombination of PaURA3 (pop-in), followed by the removal of PaURA3 (pop-out). In the obtained double auxotrophic strain (Palys12Δ, Paura3), PaADE2 was further disrupted, and PaURA3 was removed to obtain the triple auxotrophic strain PGB800 (Paura3, Palys12Δ, Paade2Δ). The whole-genome sequence of the PGB800 strain did not contain foreign genes used for genetic manipulation and disrupted PaADE2 and PaLYS12, and removed PaURA3, as planned.


Subject(s)
Basidiomycota , Ustilaginales , Saccharomyces cerevisiae/genetics , Uracil , Ustilaginales/genetics
2.
Water Sci Technol ; 81(3): 456-465, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32385199

ABSTRACT

A full-scale swine-wastewater activated sludge treatment plant that contains naturally enriched anammox biofilms was investigated for 2 years. Red biofilm in this system included Planctomycetes at a maximum of 62.5% of the total bacteria diversity, including Candidatus Jettenia and Candidatus Brocadia. The plant was operated with an influent containing 1,104 ± 513 mg/L biochemical oxygen demand (BOD) and 629 ± 198 mg/L total nitrogen (TN) (BOD/N of 1.78 ± 0.58) at a volumetric BOD loading rate of 0.32 ± 0.12 kg/m3/d. Notwithstanding drastically varying influent concentrations, BOD removal efficiency was stable at 95 ± 4%. However, TN removal fluctuated at 75 ± 14%. Dissolved oxygen (DO) concentrations in the aeration tank were 0.06-2.0 mg/L. DO concentration greatly affected nitrogen removal, e.g. when DO was lower than 0.3 mg/L, total inorganic nitrogen removal was 61 ± 14% (≤20 °C), 78 ± 16% (20-30 °C), and 75 ± 12% (≥30 °C), whereas at higher DO concentrations, removal rates were 47 ± 13%, 55 ± 16%, and 68%, respectively. As BOD concentration in the influent was limited compared to nitrogen concentration, nitrogen was likely removed by simultaneous nitrification, anammox, and denitrification (SNAD) under microaerobic conditions. Maintaining low DO concentrations would therefore be a simple method to improve nitrogen removal during SNAD processes for swine-wastewater treatment with fluctuating influent.


Subject(s)
Denitrification , Nitrification , Animals , Bioreactors , Nitrogen , Oxidation-Reduction , Sewage , Swine , Wastewater
3.
Microbiol Immunol ; 62(6): 380-387, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29660148

ABSTRACT

Toll-like receptor 5 is a pattern-recognition receptor for bacterial flagellin. We previously reported that a single nucleotide polymorphism (SNP) of swine TLR5, C1205T, impairs recognition of Salmonella typhimurium (ST) flagellin and ethanol-killed Salmonella Choleraesuis (SC). In the present study, weaned, specific pathogen-free (SPF) Landrace piglets with CC, CT or TT genotypes were orally infected with ST (L-3569 strain) to determine the effect of this specific SNP on ST infection in vivo. Eighteen ST-infected piglets (six each with CC, CT, or TT) exhibited fever and diarrhea for 1 week after infection. TT piglets had the longest duration of fever. TT piglets had the greatest mean diarrhea score during the experimental period, followed by CT and CC piglets. Fecal ST shedding was greater in CT and TT pigs than CC pigs from 2 days after infection. Serum haptoglobin concentration increased in ST-infected piglets and to greater extents in CT and TT pigs than CC pigs. Daily weight gain was lower in infected pigs, particularly TT piglets, than control pigs. To the best of our knowledge, this study is the first to demonstrate that impairment of TLR recognition affects pig susceptibility to disease in vivo. Thus, piglets with the T allele of swine TLR5 (C1205T) exhibit impaired resistance to ST infection. Furthermore, elimination of the T allele of this SNP from Landrace pigs would lead to enhancement of their resistance to ST infection.


Subject(s)
Polymorphism, Single Nucleotide/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Swine Diseases/immunology , Toll-Like Receptor 5/immunology , Animals , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/veterinary , Feces/microbiology , Genotype , Haptoglobins/analysis , Interleukin-1beta/blood , Lymph Nodes/microbiology , Lymph Nodes/pathology , Male , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Swine , Swine Diseases/microbiology , Weaning
4.
Nature ; 491(7424): 393-8, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23151582

ABSTRACT

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.


Subject(s)
Genome/genetics , Phylogeny , Sus scrofa/classification , Sus scrofa/genetics , Animals , Demography , Models, Animal , Molecular Sequence Data , Population Dynamics
5.
Anim Biotechnol ; 29(3): 227-233, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29035142

ABSTRACT

Widely used antipig CD4 monoclonal antibodies (mAbs) fail to recognize CD4 alleles characteristic of miniature pig lines such as the National Institutes of Health (NIH) miniature pigs and microminipigs. We surveyed polymorphisms in the coding sequence of the porcine CD4 gene among Western and Oriental pig breeds and Japanese wild boars and investigated their distribution. Of the 13 alleles that we identified among the 47 animals, 2 in group I and 3 in group II were found exclusively in Western breed pigs. Group IV alleles, which included mAb-nonbinding alleles, were found frequently in Oriental breed pigs, suggesting that the mAb-nonbinding allele arose from the gene pool of Oriental pigs. Group IV alleles were also found in Duroc and Large White pigs, suggesting genetic inflow from Oriental pig breeds into Western breeds. Comparison of the CD4 sequences of species in Cetartiodactyla suggested that the group IV alleles in Sus scrofa occurred before the divergence of this species from the other artiodactyls. The different antibody specificities of the various CD4 alleles may facilitate the discrimination of T-cell populations in transplantation studies using miniature pigs. The significance of the preservation of CD4 polymorphisms to immune function in pigs warrants further investigation.


Subject(s)
CD4 Antigens/genetics , Polymorphism, Single Nucleotide/genetics , Sus scrofa/genetics , Swine, Miniature/genetics , Animals , Gene Frequency , Male , Swine
6.
J Cell Biochem ; 118(3): 537-553, 2017 03.
Article in English | MEDLINE | ID: mdl-27608441

ABSTRACT

In this study, we created porcine-induced pluripotent stem (iPS) cells with the expression of six reprogramming factors (Oct3/4, Klf4, Sox2, c-Myc, Lin28, and Nanog). The resulting cells showed growth dependent on LIF (leukemia inhibitory factor) and expression of multiple stem cell markers. Furthermore, the iPS cells caused teratoma formation with three layers of differentiation and had both active X chromosomes (XaXa). Our iPS cells satisfied the both of important characteristics of stem cells: teratoma formation and activation of both X chromosomes. Injection of these iPS cells into morula stage embryos showed that these cells participate in the early stage of porcine embryogenesis. Furthermore, the RNA-Seq analysis detected that expression levels of endogenous pluripotent related genes, NANOG, SOX2, ZFP42, OCT3/4, ESRRB, and ERAS were much higher in iPS with six factors than that with four reprogramming factors. We can conclude that the expression of six reprogramming factors enables the creation of porcine iPS cells, which is partially close to naive iPS state. J. Cell. Biochem. 118: 537-553, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cellular Reprogramming Techniques , Gene Expression , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/biosynthesis , X Chromosome/metabolism , Animals , Female , Swine
7.
Immunogenetics ; 69(2): 125-130, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27796443

ABSTRACT

The NLRC4 inflammasome, which recognizes flagellin and components of the type III secretion system, plays an important role in the clearance of intracellular bacteria. Here, we examined the genomic sequences carrying two genes encoding key components of the NLRC4 inflammasome-NLR family, CARD-containing 4 (NLRC4), and NLR apoptosis inhibitory protein (NAIP)-in pigs. Pigs have a single locus encoding NLRC4 and NAIP. Comparison of the sequences thus obtained with the corresponding regions in humans revealed the deletion of intermediate exons in both pig genes. In addition, the genomic sequences of both pig genes lacked valid open reading frames encoding functional NLRC4 or NAIP protein. Additional pigs representing multiple breeds and wild boars also lacked the exons that we failed to find through genome sequencing. Furthermore, neither the NLRC4 nor the NAIP gene was expressed in pigs. These findings indicate that pigs lack the NLRC4 inflammasome, an important factor involved in monitoring bacterial proteins and contributing to the clearance of intracellular pathogens. These results also suggest that genetic polymorphisms affecting the molecular functions of TLR2, TLR4, TLR5, and other pattern recognition receptors associated with the recognition of bacteria have a more profound influence on disease resistance in pigs than in other species.


Subject(s)
Bacteria/immunology , CARD Signaling Adaptor Proteins/genetics , Genome , Immunity, Innate/immunology , Inflammasomes/genetics , Neuronal Apoptosis-Inhibitory Protein/genetics , Animals , Cells, Cultured , Inflammasomes/immunology , Macrophages/immunology , Macrophages/metabolism , Swine , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
8.
Immunogenetics ; 68(9): 693-701, 2016 10.
Article in English | MEDLINE | ID: mdl-27236661

ABSTRACT

The nucleotide-binding domain, leucine-rich-containing family, pyrin-domain containing-3 (NLRP3) inflammasome comprises the major components caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and NLRP3. NLRP3 plays important roles in maintaining immune homeostasis mediated by intestinal microorganisms and in the immunostimulatory properties of vaccine adjuvants used to induce an immune response. In the present study, we first cloned a complementary DNA (cDNA) encoding porcine ASC because its genomic sequence was not completely determined. The availability of the ASC cDNA enabled us to reconstitute porcine NLRP3 inflammasomes using an in vitro system that led to the identification of the immune functions of porcine NLRP3 and ASC based on the production of interleukin-1ß (IL-1ß). Further, we identified six synonymous and six nonsynonymous single-nucleotide polymorphisms (SNPs) in the coding sequence of NLRP3 of six breeds of pigs, including major commercial breeds. Among the nonsynonymous SNPs, the Q969R polymorphism is associated with an increased release of IL-1ß compared with other porcine NLRP3 variants, indicating that this polymorphism represents a gain-of-function mutation. This allele was detected in 100 % of the analyzed Chinese Jinhua and Japanese wild boars, suggesting that the allele is maintained in the major commercial native European breeds Landrace, Large White, and Berkshire. These findings represent an important contribution to our knowledge of the diversity of NLRP3 nucleotide sequences among various pig populations. Moreover, efforts to exploit the gain of function induced by the Q969R polymorphism promise to improve pig breeding and husbandry by conferring enhanced resistance to pathogens as well as contributing to vaccine efficacy.


Subject(s)
Asian People/genetics , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics , Animals , Apoptosis , Cloning, Molecular , HEK293 Cells , Humans , Swine
9.
Immunogenetics ; 68(4): 275-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26762386

ABSTRACT

Dectin-1, a C-type lectin receptor that recognizes fungal ß-glucans, is involved in antifungal immunity and the regulation of intestinal immune homeostasis. Dectin-1 is involved in both synthesis and maturation of interleukin-1ß, a key pro-inflammatory cytokine in immunity. Here, we assessed the genetic diversity in the gene encoding dectin-1 (CLEC7A) within various pig populations and examined the influence of these polymorphisms on the two different signaling pathways after ligand recognition. An amino-acid polymorphism located in the carbohydrate-recognition domain, leucine to serine at position 138 (L138S), which occurred exclusively in Japanese wild boars at low frequency, significantly increased NF-κB induction but not caspase-8 activity after stimulation with zymosan. In contrast, other amino-acid polymorphisms present at comparatively high frequency in commercial pig populations had little influence on ligand recognition. These results suggest that functionally neutral polymorphisms in dectin-1 are widespread in pig populations.


Subject(s)
Genetic Variation , Interleukin-1beta/immunology , Lectins, C-Type/genetics , Receptors, Immunologic/genetics , Animals , Genetics, Population , Interleukin-1beta/biosynthesis , Lectins, C-Type/immunology , NF-kappa B/genetics , Signal Transduction/immunology , Sus scrofa/genetics , Sus scrofa/immunology , Swine , beta-Glucans/immunology
10.
Microbiol Immunol ; 60(12): 824-834, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27925288

ABSTRACT

In this study, a porcine reproductive and respiratory syndrome virus (PRRSV) that was isolated from a 9-week-old diseased pig on a farm in Japan with a high mortality rate during 2007-2008 was characterized. This unique isolate, designated as Jpn5-37, did not have a high nucleotide identity in open reading frame 5 against any Japanese isolates. Among all available type 2 PRRSV complete genome sequences, Jpn5-37 shared the highest nucleotide identity (93.6%) with virulent strain MN184A. The genomic characteristics of Jpn5-37 were highly conserved with respect to the virulent MN184A, including a continuous eight amino acid deletion in the nonstructural protein 2 region. Moreover, virus distribution, viremia and the gross and microscopic characteristics of lesions were investigated in pigs 10 days post-inoculation to elucidate the pathogenicity of the isolate. Intranasal inoculation was found to rapidly result in viremia and dissemination of the Jpn5-37 isolate to several tissues in a similar manner to EDRD1; however, the amounts of Jpn5-37 RNA in serum were significantly greater. Similarly, the quantities of Jpn5-37 viral RNA in all organs tested tended to be higher than with EDRD1 infection. Mean rectal temperatures were significantly higher in the Jpn5-37-inoculated than in the control group at 4 and 6 days post infection (dpi) and in the EDRD1-inoculated group at 6 and 8 dpi. These results suggest that the Jpn5-37 strain replicates and is more efficiently distributed to the organs than is EDRD1 under the same conditions.


Subject(s)
Genome, Viral , Porcine Reproductive and Respiratory Syndrome/pathology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , RNA, Viral/genetics , Sequence Analysis, DNA , Animal Structures/virology , Animals , Cluster Analysis , Japan , Phylogeny , Porcine respiratory and reproductive syndrome virus/isolation & purification , RNA, Viral/blood , Sequence Homology, Amino Acid , Swine , Time Factors , Viral Envelope Proteins/genetics , Viremia , Virulence
11.
Immunogenetics ; 66(1): 25-32, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24232602

ABSTRACT

The objective was to determine if single nucleotide polymorphisms (SNPs) in porcine MX2 gene affect its antiviral potential. MX proteins are known to suppress the multiplication of several viruses, including influenza virus and vesicular stomatitis virus (VSV). In domestic animals possessing highly polymorphic genome, our previous research indicated that a specific SNP in chicken Mx gene was responsible for its antiviral function. However, there still has been no information about SNPs in porcine MX2 gene. In this study, we first conducted polymorphism analysis in 17 pigs of MX2 gene derived from seven breeds. Consequently, a total of 30 SNPs, of which 11 were deduced to cause amino acid variations, were detected, suggesting that the porcine MX2 is very polymorphic. Next, we classified MX2 into eight alleles (A1-A8) and subsequently carried out infectious experiments with recombinant VSVΔG*-G to each allele. In A1-A5 and A8, position 514 amino acid (514 aa) of MX2 was glycine (Gly), which did not inhibit VSV multiplication, whereas in A6 and A7, 514 aa was arginine (Arg), which exhibited the antiviral ability against VSV. These results demonstrate that a SNP at 514 aa (Gly-Arg) of porcine MX2 plays a pivotal role in the antiviral activity as well as that at 631 aa of chicken Mx.


Subject(s)
Antiviral Agents/pharmacology , Myxovirus Resistance Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Vesicular Stomatitis/prevention & control , Vesicular stomatitis Indiana virus/immunology , Animals , BALB 3T3 Cells , Cloning, Molecular , Mice , Myxovirus Resistance Proteins/immunology , Myxovirus Resistance Proteins/pharmacology , Polymorphism, Restriction Fragment Length , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Swine , Vesicular Stomatitis/immunology , Vesicular Stomatitis/virology , Vesicular stomatitis Indiana virus/genetics
12.
Environ Sci Pollut Res Int ; 31(9): 13941-13953, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265596

ABSTRACT

The degradation of biodegradable plastics poses a significant environmental challenge and requires effective solutions. In this study, an esterase derived from a phyllosphere yeast Pseudozyma antarctica (PaE) enhanced the degradation and mineralization of poly(butylene succinate-co-adipate) (PBSA) film in soil. PaE was found to substitute for esterases from initial degraders and activate sequential esterase production from soil microbes. The PBSA film pretreated with PaE (PBSA-E) rapidly diminished and was mineralized in soil until day 55 with high CO2 production. Soil with PBSA-E maintained higher esterase activities with enhancement of microbial abundance, whereas soil with inactivated PaE-treated PBSA film (PBSA-inact E) showed gradual degradation and time-lagged esterase activity increases. The fungal genera Arthrobotrys and Tetracladium, as possible contributors to PBSA-film degradation, increased in abundance in soil with PBSA-inact E but were less abundant in soil with PBSA-E. The dominance of the fungal genus Fusarium and the bacterial genera Arthrobacter and Azotobacter in soil with PBSA-E further supported PBSA degradation. Our study highlights the potential of PaE in addressing concerns associated with biodegradable plastic persistence in agricultural and environmental contexts.


Subject(s)
Biodegradable Plastics , Microbiota , Polyesters/metabolism , Esterases/metabolism , Saccharomyces cerevisiae/metabolism , Soil , Biodegradable Plastics/metabolism , Plastics/metabolism
13.
BMC Genomics ; 14: 332, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23676093

ABSTRACT

BACKGROUND: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. RESULTS: The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. CONCLUSIONS: This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig's adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


Subject(s)
Genomics , Immunity/genetics , Molecular Sequence Annotation , Swine/genetics , Swine/immunology , Animals , Cattle , Evolution, Molecular , Gene Duplication , Humans , Immunoglobulins/genetics , Mice , Models, Molecular , Protein Conformation , Receptors, Antigen, T-Cell/genetics , Receptors, KIR/genetics , Selection, Genetic , Species Specificity
14.
Anim Genet ; 44(4): 454-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23777416

ABSTRACT

We performed a genome-wide association study using the porcine 60K SNP array to detect QTL regions for nine traits in a three-generational Duroc samples (n = 651), viz. generations 1, 2 and 3 from a population selected over five generations using a closed nucleus breeding scheme. We applied a linear mixed model for association mapping to detect SNP effects, adjusting for fixed effects (sex and season) and random polygenic effects (reflecting genetic relatedness), and derived a likelihood ratio statistic for each SNP using the efficient mixed-model association method. We detected a region on SSC6 for backfat thickness (BFT) and on SSC7 for cannon bone circumference (CANNON), with a genome-wide significance of P < 0.01 after Bonferroni correction. These regions had been detected previously in other pig populations. Six genes are located in the BFT-associated region, while the CANNON-associated region includes 66 genes. In the future, significantly associated SNPs, derived by sequencing the coding regions of the six genes in the BFT region, can be used in marker-assisted selection of BFT, whereas haplotypes constructed from the SSC7 region with strong LD can be used to select for the CANNON trait in our resource family.


Subject(s)
Genome-Wide Association Study/veterinary , Genome/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Swine/genetics , Adipose Tissue/growth & development , Animals , Breeding , Chromosome Mapping/veterinary , Gene Expression Profiling/veterinary , Genetic Markers , Haplotypes , Leg Bones/growth & development , Linear Models , Oligonucleotide Array Sequence Analysis/veterinary , Phenotype , Sequence Analysis, DNA/veterinary , Swine/growth & development , Swine/metabolism
15.
Anim Sci J ; 94(1): e13827, 2023.
Article in English | MEDLINE | ID: mdl-36992553

ABSTRACT

Closed-pig line breeding could change the genetic structure at a genome-wide scale because of the selection in a pig breeding population. We investigated the changes in population structure among generations at a genome-wide scale and the selected loci across the genome by comparing the observed and expected allele frequency changes in mycoplasma pneumonia of swine (MPS)-selected pigs. Eight hundred and seventy-four Landrace pigs, selected for MPS resistance without reducing average daily gain over five generations, had 37,299 single nucleotide polymorphisms (SNPs) and were used for genomic analyses. Regarding population structure, individuals in the first generation were the most widely distributed and then converged into a specific group, as they were selected over five generations. For allele frequency changes, 96 and 14 SNPs had higher allele frequency changes than the 99.9% and 99.99% thresholds of the expected changes, respectively. These SNPs were evenly spread across the genome, and a few of these selected regions overlapped with previously detected quantitative trait loci for MPS and immune-related traits. Our results indicated that the considerable changes in allele frequency were identified in many regions across the genome by closed-pig line breeding based on estimated breeding value.


Subject(s)
Pneumonia of Swine, Mycoplasmal , Swine Diseases , Swine/genetics , Animals , Pneumonia of Swine, Mycoplasmal/genetics , Gene Frequency/genetics , Quantitative Trait Loci/genetics , Genomics , Phenotype , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study/veterinary
16.
BMC Genomics ; 13: 581, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23150988

ABSTRACT

BACKGROUND: Along with the draft sequencing of the pig genome, which has been completed by an international consortium, collection of the nucleotide sequences of genes expressed in various tissues and determination of entire cDNA sequences are necessary for investigations of gene function. The sequences of expressed genes are also useful for genome annotation, which is important for isolating the genes responsible for particular traits. RESULTS: We performed a large-scale expressed sequence tag (EST) analysis in pigs by using 32 full-length-enriched cDNA libraries derived from 28 kinds of tissues and cells, including seven tissues (brain, cerebellum, colon, hypothalamus, inguinal lymph node, ovary, and spleen) derived from pigs that were cloned from a sow subjected to genome sequencing. We obtained more than 330,000 EST reads from the 5'-ends of the cDNA clones. Comparison with human and bovine gene catalogs revealed that the ESTs corresponded to at least 15,000 genes. cDNA clones representing contigs and singlets generated by assembly of the EST reads were subjected to full-length determination of inserts. We have finished sequencing 31,079 cDNA clones corresponding to more than 12,000 genes. Mapping of the sequences of these cDNA clones on the draft sequence of the pig genome has indicated that the clones are derived from about 15,000 independent loci on the pig genome. CONCLUSIONS: ESTs and cDNA sequences derived from full-length-enriched libraries are valuable for annotation of the draft sequence of the pig genome. This information will also contribute to the exploration of promoter sequences on the genome and to molecular biology-based analyses in pigs.


Subject(s)
Genome , Sus scrofa/genetics , Animals , Cattle , Chromosome Mapping , Chromosomes/genetics , Chromosomes/metabolism , Cloning, Molecular , Contig Mapping , Expressed Sequence Tags , Gene Library , Humans , Sequence Analysis, DNA
18.
Immunogenetics ; 64(3): 187-99, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21932051

ABSTRACT

The swine is an important animal model for allo- and xeno-transplantation donor studies, which necessitates an extensive characterization of the expression and sequence variations within the highly polygenic and polymorphic swine leukocyte antigen (SLA) region. Massively parallel pyrosequencing is potentially an effective new 2ndGen method for simultaneous high-throughput genotyping and detection of SLA class I gene expression levels. In this study, we compared the 2ndGen method using the Roche Genome Sequencer 454 FLX with the conventional method using sub-cloning and Sanger sequencing to genotype SLA class I genes in five pigs of the Clawn breed and four pigs of the Landrace breed. We obtained an average of 10.4 SLA class I sequences per pig by the 2ndGen method, consistent with the inheritance data, and an average of only 6.0 sequences by the conventional method. We also performed a correlation analysis between the sequence read numbers obtained by the 2ndGen method and the relative expression values obtained by quantitative real-time PCR analysis at the allele level. A significant correlation coefficient (r = 0.899, P < 0.01) was observed between the sequence read numbers and the relative quantitative values for the expressed classical SLA class I genes SLA-1, SLA-2, and SLA-3, suggesting that the sequence read numbers closely reflect the gene expression levels in white blood cells. Overall, five novel class I sequences, different haplotype-specific expression patterns and a splice variant for one of the SLA class I genes were identified by the 2ndGen method at greater efficiency and sensitivity than the conventional method.


Subject(s)
Gene Expression , Genes, MHC Class I , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Antigens Class II/genetics , Alleles , Alternative Splicing , Animals , Genotyping Techniques , Histocompatibility Antigens Class I , Molecular Sequence Data , Sensitivity and Specificity , Swine
19.
Microbiol Immunol ; 56(6): 385-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22420886

ABSTRACT

In the present study, an allele-specific primer-polymerase chain reaction (ASP-PCR) for genotyping a single nucleotide polymorphism (SNP) of swine Toll-like receptor 5 (TLR5) (C1205T; P402L) that is related to the impaired recognition of Salmonella enterica serovar Choleraesuis (SC) was developed. The allele frequencies in several pig breeds in Japan and the Czech Republic were also compared. The swine TLR5 C1205T mutation was successfully determined by ASP-PCR using genomic DNA samples in Japan that had previously been genotyped by a sequencing method. Using the PCR condition determined, genomic DNA samples from blood obtained from 110 pigs from seven different breeds in the Czech Republic were genotyped by the ASP-PCR. The genotyping results from the ASP-PCR completely matched the results from the sequencing method. The allele frequency of the swine TLR5 C1205T mutation was 27.5% in the Landrace breed of the Czech Republic compared with 50.0% in Japanese Landrace. In Japan, the C1205T mutation was found only in the Landrace breed, whereas in the Czech Republic it was found in both the Landrace and Piétrain breeds. These results indicate the usefulness of ASP-PCR for detecting a specific SNP for swine TLR5 affecting ligand recognition. They also suggest the possibility of genetically improving pigs to enhance their resistance against SC infection by eliminating or selecting this specific SNP of swine TLR5.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing/methods , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Toll-Like Receptor 5/genetics , Animals , Czech Republic , Gene Frequency , Genotype , Japan , Salmonella Infections, Animal/genetics , Salmonella enterica/immunology , Swine , Swine Diseases/genetics
20.
J Immunol ; 184(7): 3734-42, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20207992

ABSTRACT

In this study, we have mapped the 3' H chain V region (V(H)) genes and those in the H chain diversity, H chain joining, and 5' portion of the H chain constant locus. We show that swine possess only two functional H chain diversity segments and only one functional H chain joining segment. These data help to explain more than a decade of observations on the preimmune repertoire of this species and reveal the vulnerability of swine to natural or designed mutational events. The results are consistent with earlier studies on the region containing Enh, Cmu, and Cdelta while revealing that the ancestral IgG3 is the most 5' Cgamma gene. We also observed a recent duplication ( approximately 1.6 million years ago) in the V(H) locus that contains six of the seven V(H) genes that comprise 75% of the preimmune repertoire. Because there are no known transfers of immune regulators or Ags that cross the placenta as in mice and humans, fetal V(H) usage must be intrinsically regulated. Therefore, we quantified V(H) usage in fetal piglets and demonstrated that usage is independent of the position of V(H) genes in the genome; the most 3' functional V(H) gene (IGHV2) is rarely used, whereas certain upstream genes (IGHV14 and IGHV15) are predominately used early in fetal liver but seldom thereafter. Similar to previous studies, three V(H) genes account for 40% of the repertoire and six for approximately 70%. This limited combinatorial diversity of the porcine V(H) repertoire further emphasizes the dependence on CDR3 diversity for generating the preimmune Ab repertoire of this species.


Subject(s)
Genes, Immunoglobulin Heavy Chain/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Swine/genetics , Amino Acid Sequence , Animals , Animals, Newborn , Base Sequence , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Fetus , Humans , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Swine/immunology
SELECTION OF CITATIONS
SEARCH DETAIL