Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 116(12): 1421-1432, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37851188

ABSTRACT

A novel cellulolytic strain JC656T was isolated from the rhizosphere soil of Alisma plantago-aquatica of floating island (Phumdis) of Loktak lake, Manipur, India. The 16S rRNA gene sequence similarities between strain JC656T and other Sinomonas type strains ranged between 98.5 and 97.3%, wherein strain JC656T exhibited the highest sequence similarity (98.5%) to Sinomonas notoginsengisoli KCTC 29237T. Colonies were yellow-colored and grew aerobically. Cells were gram-positive, rod-shaped and non-motile. The optimal growth of the strain JC656T occured at 28 °C and pH 7. Strain JC656T contained MK-9 as the predominant isoprenoid quinone and anteiso-C15:0, iso-C16:0 and anteiso-C17:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, phosphatidylmonomethylethanolamine and a glycolipid were the polar lipids. Strain JC656T contained lysine, alanine, glutamine, diaminopimelic acid (DAP) and two unidentified amino acids as characteristic cell wall amino acids. The genome size of strain JC656T was 3.9 Mb with a DNA G + C content of 69.9 mol %. For the affirmation of the strain's taxonomic status, a detailed phylogenomic study was done. Based on its phylogenetic position and morphological, physiological, and genomic features, strain JC656T represents a new species of the genus Sinomonas, for which we propose the name Sinomonas cellulolyticus sp. nov. The type strain JC656T = (KCTC 49339T = NBRC 114142T).


Subject(s)
Fatty Acids , Lakes , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , India , Fatty Acids/analysis , Amino Acids , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Bacterial Typing Techniques , Phospholipids/analysis
2.
Curr Microbiol ; 79(8): 233, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35767156

ABSTRACT

A pink-pigmented bacterium (strain JC162T = KCTC 32190T) was isolated from a beach sand sample. Cells were Gram-stain-negative, coccoid, non-motile, and strictly aerobic. EzBioCloud BLAST search of 16S rRNA gene sequence showed that strain KCTC 32190T had the highest sequence identity to the members of the genus Neoroseomonas and was closely related to N. oryzicola YC6724T (99.8%), N. sediminicola FW-3T (98.5%), N. soli 5N26T (98.2%), and other members of the genus Neoroseomonas (< 97.9%) in the family Acetobacteriaceae within the class of Alphaproteobacteria. Chemo-organoheterotrophy was the only growth mode and growth was possible on a wide range of organic substrates. Strain KCTC 32190T was positive for catalase and oxidase. Fatty acid composition of strain KCTC 32190T includes (in decreasing %) C18:1ω7c, cyclo-C19:0ω8c, C18:02-OH, C16:0, C18:03-OH, C16:1ω7c/C16:1ω6c, C16:02-OH and C16:1ω5c. Polar lipids comprised of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified amino lipid, and three unidentified lipids. The genomic DNA G+C content of the strain KCTC 32190T was 70.9 mol%. Strain KCTC 32190T has a low ANI value of < 92.7% and genome reassociation (based on digital DNA-DNA hybridization) value of < 48.8% with the nearest type strains. The genome relatedness is supported by other polyphasic taxonomic data to propose strain KCTC 32190T as a new species in the genus Neoroseomonas with the name Neoroseomonas marina sp. nov. The type strain is strain JC162T (KCTC 32190T = CGMCC1.12364T).


Subject(s)
Fatty Acids , Sand , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Arch Microbiol ; 203(2): 741-754, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33047175

ABSTRACT

Two pink-coloured, oxidase-catalase-positive, salt and alkali-tolerant planctomycetal strains (JC635T and JC645T) with pear to spherical-shaped, Gram-stain-negative, motile cells were isolated from Chilika lagoon, India. Both strains share highest 16S rRNA gene sequence identity with members of the genus Rhodopirellula (< 94%) and Roseimaritima (< 94%) of the family Pirellulaceae. The 16S rRNA sequence identity between the strains JC635T and JC645T is 96.1%. Respiratory quinone for both strains is MK6. Major fatty acids are C18:1ω9c and C16:0. Major polar lipids are phosphatidylethanolamine, phosphatidylcholine, unidentified amino lipids and an unidentified lipid. The genomic size of strain JC635T and JC645T are 7.95 Mb and 8.2 Mb with DNA G + C content of 55.1 and 60.0 mol%, respectively. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that both strains belong to a novel genus Roseiconus gen. nov. and constitute two novel species for which we propose the names Roseiconus nitratireducens sp. nov. and Roseiconus lacunae sp. nov. The two novel species are represented by the type strains JC645T (= KCTC 72174T = NBRC 113879T) and JC635T (= KCTC 72164T = NBRC 113875T), respectively.


Subject(s)
Phylogeny , Planctomycetales/classification , Seawater/microbiology , Base Composition , Fatty Acids/analysis , India , Planctomycetales/genetics , RNA, Ribosomal, 16S/genetics , Species Specificity , Water Microbiology
4.
Antonie Van Leeuwenhoek ; 114(9): 1465-1477, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34259976

ABSTRACT

Strain JC669T was isolated from a floating island of Loktak lake, Manipur, India and shares the highest 16S rRNA gene sequence identity with Aquisphaera giovannonii OJF2T. The novel strain is aerobic, Gram negative, light pink-coloured, non-motile, NaCl intolerant and spherical to oval-shaped. It grows in the form of single cells or aggregates and possibly forms structures which appear like fruiting bodies. Strain JC669T grows well up to pH 9.0.The isolate produces MK-6 as respiratory quinone, C18:1ω9c, C16:0 and C18:0 as major fatty acids and phosphatidylcholine, an unidentified amino lipid, an unidentified choline lipid (UCL) and six additional unidentified lipids (UL1, 2, 3, 4, 5, 6) as polar lipids. Strain JC669T has a large genome size of 10.04 Mb and the genomic G + C content was 68.5 mol%. The genome contained all genes essential for lycopene related carotenoid biosynthesis. The polyphasic analysis of its phylogenetic position, morphological, physiological and genomic features supports the classification of strain JC669T as a novel species of the genus Aquisphaera, for which we propose the name Aquisphaera insulae sp. nov. Strain JC669T (= KCTC 72672T = NBRC 114306T) is the type strain of the novel species.


Subject(s)
Lakes , Phospholipids , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , India , Phospholipids/analysis , Phylogeny , Planctomycetales , Planctomycetes , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Int J Syst Evol Microbiol ; 70(1): 662-667, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31661050

ABSTRACT

A Gram-stain-negative, motile, alkali-tolerant, swollen-rod shaped, reddish brown coloured, phototrophic bacterium designated as strain JA980T, was isolated from freshwater sampled at Umiam lake, Shillong, India. Strain JA980T grew well up to pH 9.0. Respiratory quinones were ubiquinone 10 and rhodoquinone 10. The major fatty acid was C18: 1ω7c/C18:1ω6c with minor amounts of C18:0, C16:0, C18:0 3-OH and C16:0 3-OH. Strain JA980T contained bacteriochlorophyll-a and carotenoids of the spirilloxanthin series. The polar lipids of strain JA980T comprised phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, an unidentified phospholipid, unidentified amino lipids (AL1,3,4,5) and an unidentified lipid (L1). Strain JA980T had the highest (99.57 %) 16S rRNA gene sequence similarity to the type strains of Rhodomicrobium vannielii ATCC17100T and Rhodomicrobium udaipurense JA643T. The genome of strain JA980T was 3.88 Mbp with a DNA G+C content of 62.4 mol%. Based on the results of phylogenetic analyses, low in silico DNA-DNA hybridization values (33 %), low (87 %) average nucleotide identity results, chemotaxonomic characteristics and differential physiological properties, strain JA980T could not be classified into either of the two recognized species of the genus Rhodomicrobium, suggesting that it represents a novel species, for which the name Rhodomicrobium lacus sp. nov. is proposed. The type strain is JA980T (=KCTC 15697T= MCC 3714T= NBRC 113803T).


Subject(s)
Lakes/microbiology , Phylogeny , Rhodomicrobium/classification , Bacterial Typing Techniques , Bacteriochlorophyll A/chemistry , Base Composition , Carotenoids/chemistry , DNA, Bacterial/genetics , Fatty Acids/chemistry , India , Nucleic Acid Hybridization , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Rhodomicrobium/isolation & purification , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Water Microbiology
6.
Int J Syst Evol Microbiol ; 70(6): 3647-3655, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32369005

ABSTRACT

A Gram-stain-negative, aerobic, non-motile, salt- and alkali-tolerant, pear to oval shaped, rosette-forming, white coloured, bacterium, designated as strain JC646T, was isolated from a sediment sample collected from Chilika lagoon, India. Strain JC646T reproduced through budding, grew well at up to pH 9.0 and tolerated up to 7 % NaCl. Strain JC 646T utilized α-d-glucose, fumarate, lactose, sucrose, fructose, d-galactose, mannose, maltose and d-xylose as carbon sources. Peptone, l-isoleucine, l-serine, l-lysine, l-glutamic acid, l-aspartic acid, dl-threonine and l-glycine were used by the strain as nitrogen sources for growth. The respiratory quinone was MK6. Major fatty acids were C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The polar lipids of strain JC646T comprised phosphatidyl-dimethylethanolamine, phosphatidylcholine, diphosphatidylglycerol, an unidentified amino lipid and two unidentified lipids. Strain JC646T had highest (97.3 %) 16S rRNA gene sequence identity to the only species of the genus Gimesia, Gimesia maris DSM 8797T. The genome of strain JC646T was 7.64 Mbp with a DNA G+C content of 53.2 mol%. For the resolution of the phylogenetic congruence of the novel strain, the phylogeny was also reconstructed with the sequences of 92 housekeeping genes. Based on phylogenetic analyses, digital DNA-DNA hybridization (19.0 %), genome average nucleotide identity (74.5 %) and average amino acid identity/percentageof conserved proteins (77 %) results, chemotaxonomic characteristics, and differential physiological properties, strain JC646T is recognized as representing a new species of the genus Gimesia, for which we propose the name Gimesia chilikensis sp. nov. The type strain is JC646T (=KCTC 72175T=NBRC 113881T).


Subject(s)
Geologic Sediments/microbiology , Phylogeny , Planctomycetales/classification , Saline Waters , Water Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , India , Nucleic Acid Hybridization , Phospholipids/chemistry , Planctomycetales/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
7.
Microbiol Resour Announc ; 12(3): e0124022, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36790193

ABSTRACT

We report the draft genome sequence of Afifella sp. strain JA880, which was isolated from a saltwater pond near Pata, Gujarat, India. The genome assembly contains 3,794,364 bp, with a GC content of 63.5%. The genome sequence provides insights into the metabolic potential of Afifella sp. strain JA880.

8.
Microbiol Resour Announc ; 11(10): e0053522, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36047779

ABSTRACT

Here, we report a 2.86-Mbp genome sequence of Kocuria sp. strain JC486, which was isolated from a salt marsh, and a 3.03-Mbp sequence of the type strain Kocuria subflava KCTC 39547. Prediction from their genomes indicates that both strains are nonpathogenic.

SELECTION OF CITATIONS
SEARCH DETAIL