Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Neurobiol Learn Mem ; 172: 107247, 2020 07.
Article in English | MEDLINE | ID: mdl-32416137

ABSTRACT

Spatial learning and memory enables individuals to orientate themselves in an external environment. Synaptic stimulation of dendritic spines on hippocampal place cells underlies adaptive cognitive performance, inducing plastic changes such as spinogenesis, pruning and structural interconversion. Such plastic changes are driven by complex molecular machinery that relies on several actin cytoskeleton-associated proteins (ACAP's), these interacting with actin filaments in the postsynaptic density to guide the conformational changes to spines in accordance with the synaptic information they receive. However, the specific dynamics of the plastic changes in spines driven by ACAP's are poorly understood. Adult rats exhibit efficient allocentric reference memory 30 days after training in a spatial learning paradigm in the Morris water maze. A Golgi study revealed this behavior to be associated with a reduction in both spine density and in mushroom spines, as well as a concomitant increase in thin spines. These changes were accompanied by the overexpression of mRNA encoding ß-actin, Spinophilin and Cortactin, whilst the expression of Profilin, α-actinin, Drebrin, Synaptopodin and Myosin decreased. By contrast, no changes were evident in Cofilin, Gelsolin and Arp2/3 mRNA. From this analysis, it appears that neither spinogenesis nor new mushroom spines are necessary for long-term spatial information retrieval, while thin spines could be potentiated to retrieve pre-learned spatial information. Further studies that focus on the signaling pathways and their related molecules may shed further light on the molecular dynamics of the plastic changes to dendritic spines that underlie cognitive performance, both under normal and pathological conditions.


Subject(s)
CA1 Region, Hippocampal/physiology , Cytoskeletal Proteins/physiology , Dendritic Spines/physiology , Memory, Long-Term/physiology , Neuronal Plasticity , Animals , Male , Rats, Sprague-Dawley , Spatial Learning/physiology , Spatial Memory/physiology
2.
J Chem Neuroanat ; 125: 102159, 2022 11.
Article in English | MEDLINE | ID: mdl-36087877

ABSTRACT

Lesions to the corticospinal tract result in several neurological symptoms and several rehabilitation protocols have proven useful in attempts to direct underlying plastic phenomena. However, the effects that such protocols may exert on the dendritic spines of motoneurons to enhance accuracy during rehabilitation are unknown. Thirty three female Sprague-Dawley adult rats were injected stereotaxically at the primary motor cerebral cortex (Fr1) with saline (CTL), or kainic acid (INJ), or kainic acid and further rehabilitation on a treadmill 16 days after lesion (INJ+RB). Motor performance was evaluated with the the Basso, Beatie and Bresnahan (BBB) locomotion scale and in the Rotarod. Spine density was quantified in a primary dendrite of motoneurons in Lamina IX in the ventral horn of the thoracolumbar spinal cord as well as spine morphology. AMPA, BDNF, PSD-95 and synaptophysin expression was evaluated by Western blot. INJ+RB group showed higher scores in motor performance. Animals from the INJ+RB group showed more thin, mushroom, stubby and wide spines than the CTL group, while the content of AMPA, BDNF, PSD-95 and Synaptophysin was not different between the groups INJ+RB and CTL. AMPA and synaptophysin content was greater in INJ group than in CTL and INJ+RB groups. The increase in the proportion of each type of spine observed in INJ+RB group suggest spinogenesis and a greater capability to integrate the afferent information to motoneurons under relatively stable molecular conditions at the synaptic level.


Subject(s)
Motor Cortex , Animals , Female , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/physiology , Kainic Acid , Motor Cortex/metabolism , Motor Neurons/metabolism , Rats, Sprague-Dawley
3.
Eur J Pharmacol ; 896: 173883, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33513334

ABSTRACT

The lesions induced by Ibotenic acid (IA) emulate some of the symptoms associated with schizophrenia, such as impaired working memory that is predominantly organized by the medial prefrontal cortex (mPFC), or difficulties in social interactions that aremainly organized by the amygdala (AMG). The plastic capacity of dendritic spines in neurons of the mPFC and AMG is modulated by molecules that participate in the known deterioration of working memory, although the influence of these on the socialization of schizophrenic patients is unknown. Here, the effect of a neonatal IA induced lesion on social behavior and working memory was evaluated in adult rats, along with the changes in cytoarchitecture of dendritic spines and their protein content, specifically the postsynaptic density protein 95 (PSD-95), Synaptophysin (Syn), AMPA receptors, and brain-derived neurotrophic factor (BDNF). Both working memory and social behavior were impaired, and the density of the spines, as well as their PSD-95, Syn, AMPA receptor and BDNF content was lower in IA lesioned animals. The proportional density of thin, mushroom, stubby and wide spines resulted in plastic changes that suggest the activation of compensatory processes in the face of the adverse effects of the lesion. In addition, the reduction in the levels of the modulating factors also suggests that the signaling pathways in which such factors are implicated would be altered in the brains of patients with schizophrenia. Accordingly, the experimental study of such signaling pathways is likely to aid the development of more effective pharmacological strategies for the treatment of schizophrenia.


Subject(s)
Amygdala/pathology , Behavior, Animal , Dendritic Spines/pathology , Neuronal Plasticity , Prefrontal Cortex/pathology , Schizophrenia/pathology , Schizophrenic Psychology , Amygdala/metabolism , Amygdala/physiopathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Ibotenic Acid , Male , Maze Learning , Memory, Short-Term , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Schizophrenia/chemically induced , Schizophrenia/metabolism , Schizophrenia/physiopathology , Social Behavior , Synaptophysin/metabolism
4.
Neurotox Res ; 39(6): 1970-1980, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34533753

ABSTRACT

There is solid epidemiological evidence that arsenic exposure leads to cognitive impairment, while experimental work supports the hypothesis that it also contributes to neurodegeneration. Energy deficit, oxidative stress, demyelination, and defective neurotransmission are demonstrated arsenic effects, but it remains unclear whether synaptic structure is also affected. Employing both a triple-transgenic Alzheimer's disease model and Wistar rats, the cortical microstructure and synapses were analyzed under chronic arsenic exposure. Male animals were studied at 2 and 4 months of age, after exposure to 3 ppm sodium arsenite in drinking water during gestation, lactation, and postnatal development. Through nuclear magnetic resonance, diffusion-weighted images were acquired and anisotropy (integrity; FA) and apparent diffusion coefficient (dispersion degree; ADC) metrics were derived. Postsynaptic density protein and synaptophysin were analyzed by means of immunoblot and immunohistochemistry, while dendritic spine density and morphology of cortical pyramidal neurons were quantified after Golgi staining. A structural reorganization of the cortex was evidenced through high-ADC and low-FA values in the exposed group. Similar changes in synaptic protein levels in the 2 models suggest a decreased synaptic connectivity at 4 months of age. An abnormal dendritic arborization was observed at 4 months of age, after increased spine density at 2 months. These findings demonstrate alterations of cortical synaptic connectivity and microstructure associated to arsenic exposure appearing in young rodents and adults, and these subtle and non-adaptive plastic changes in dendritic spines and in synaptic markers may further progress to the degeneration observed at older ages.


Subject(s)
Arsenic Poisoning/pathology , Cerebral Cortex/drug effects , Synapses/drug effects , Animals , Arsenic Poisoning/diagnostic imaging , Blotting, Western , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Diffusion Tensor Imaging , Female , Male , Mice, Transgenic , Neuronal Plasticity/drug effects , Rats , Rats, Wistar , Synapses/pathology
5.
Behav Brain Res ; 406: 113198, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33657439

ABSTRACT

Epilepsy is a chronic neurobehavioral disorder whereby an imbalance between neurochemical excitation and inhibition at the synaptic level provokes seizures. Various experimental models have been used to study epilepsy, including that based on acute or chronic administration of Pentylenetetrazol (PTZ). In this study, a single PTZ dose (60 mg/kg) was administered to adult male rats and 30 min later, various neurobiological parameters were studied related to the transmission and modulation of excitatory impulses in pyramidal neurons of the hippocampal CA1 field. Rats experienced generalized seizures 1-3 min after PTZ administration, accompanied by elevated levels of Synaptophysin and Glutaminase. This response suggests presynaptic glutamate release is exacerbated to toxic levels, which eventually provokes neuronal death as witnessed by the higher levels of Caspase-3, TUNEL and GFAP. Similarly, the increase in PSD-95 suggests that viable dendritic spines are functional. Indeed, the increase in stubby and wide spines is likely related to de novo spinogenesis, and the regulation of neuronal excitability, which could represent a plastic response to the synaptic over-excitation. Furthermore, the increase in mushroom spines could be associated with the storage of cognitive information and the potentiation of thin spines until they are transformed into mushroom spines. However, the reduction in BDNF suggests that the activity of these spines would be down-regulated, may in part be responsible for the cognitive decline related to hippocampal function in patients with epilepsy.


Subject(s)
Brain-Derived Neurotrophic Factor/drug effects , CA1 Region, Hippocampal/drug effects , Dendritic Spines/drug effects , Epilepsy/chemically induced , Epilepsy/metabolism , GABA Antagonists/pharmacology , Neuronal Plasticity/drug effects , Pentylenetetrazole/pharmacology , Pyramidal Cells/drug effects , Animals , Disease Models, Animal , GABA Antagonists/administration & dosage , Male , Pentylenetetrazole/administration & dosage , Rats , Rats, Sprague-Dawley
6.
Pharmacol Biochem Behav ; 175: 116-122, 2018 12.
Article in English | MEDLINE | ID: mdl-30267796

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) causes impaired visuospatial working memory (VWM), which primarily maps to the prefrontal cortex. However, little is known about the synaptic processes underlying cognitive loss in ADHD, or those ultimately involved in the preventive effect observed through the clinical use of Atomoxetine (ATX). To investigate the plasticity underlying ADHD related cognitive loss, and that potentially involved in the preventive action of Atomoxetine, allocentric VWM was assessed, as well as the dendritic spine number and proportional density on pyramidal neurons in the prefrontal cerebral cortex layer III of neonatal 6-hydroxydopamine-lesioned rats. The effect of acute ATX treatment was also assessed at 28 days of age. 6-OHDA induced lesions produced increased motor activity and a loss of VWM, concomitant with a reduction in thin spine density. ATX administration reversed cognitive loss, in conjunction with a decrease in thin spines and an increase in mushroom spines. A reduction in the proportion of spines involved in learning in hyperactive animals could account for the loss in cognitive function observed. Considering thin spine density was also reduced after ATX administration, we hypothesized that the restoration in cognitive function recorded could be brought about by an increase in memory related mushroom spines.


Subject(s)
Atomoxetine Hydrochloride/pharmacology , Memory, Short-Term/drug effects , Neuronal Plasticity/drug effects , Prefrontal Cortex/drug effects , Pyramidal Cells/drug effects , Animals , Female , Male , Prefrontal Cortex/cytology , Rats , Rats, Sprague-Dawley
7.
Neurosci Lett ; 657: 27-31, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28760460

ABSTRACT

Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity.


Subject(s)
Dendritic Spines/physiology , Motor Activity/physiology , Motor Cortex/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Animals , Male , Motor Cortex/cytology , Pyramidal Cells/cytology , Rats , Rats, Sprague-Dawley , Silver Staining
8.
PLoS One ; 12(11): e0188239, 2017.
Article in English | MEDLINE | ID: mdl-29176874

ABSTRACT

The structural effect of neurturin (NRTN) on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson's disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA) lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks). Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH)+ cells (28 ± 2%), their neurites (32 ± 2%) and the neuron-specific cytoskeletal marker ß-III-tubulin in the substantia nigra; striatal TH(+) fibers were also recovered (52 ± 3%), when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine) and 89 ± 1% (apomorphine). Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches.


Subject(s)
Dopaminergic Neurons/metabolism , Neurturin/metabolism , Presynaptic Terminals/metabolism , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Cytoskeleton/metabolism , Dendritic Spines/metabolism , Dopamine/metabolism , Enzyme-Linked Immunosorbent Assay , Forelimb/physiology , Male , Mice , Neurites/metabolism , Oxidopamine , Rats, Wistar , Receptors, Neurotensin/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Transfection , Vibrissae/physiology
9.
Arch Med Res ; 48(7): 609-615, 2017 10.
Article in English | MEDLINE | ID: mdl-29530339

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is highly incapacitating, and the neurobiological factors involved in an eventual functional recovery remain uncertain. Plastic changes to dendritic spines are closely related with the functional modifications of behavior. AIM OF THE STUDY: To explore the plastic response of dendritic spines in motoneurons after SCI. METHODS: Female rats were assigned to either of three groups: Intact (no manipulations), Sham (T9 laminectomy), and SCI (T9 laminectomy and spinal cord contusion). RESULTS: Motor function according to a BBBscale was progressively recovered from 2 week through 8 week postinjury, reaching a plateau through week 16. Dendritic spine density was greater in SCI vs. control groups, rostral as well as caudal to the lesion, at 8 and 16 weeks postinjury. Thin and stubby/wide spines were more abundant at both locations and time points, whereas mushroom spines predominated at 2 and 4 months in rostral to the lesion. Filopodia and atypical structures resembling dendritic spines were observed. Synaptophysin expression was lower in SCI at the caudal portion at 8 weeks, and was higher at week 16. CONCLUSION: Spinogenesis in spinal motoneurons may be a crucial plastic response to favor spontaneous recovery after SCI.


Subject(s)
Dendritic Spines/physiology , Motor Neurons/physiology , Neuronal Plasticity , Spinal Cord Injuries/physiopathology , Wound Healing/physiology , Animals , Female , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Recovery of Function , Thoracic Vertebrae
SELECTION OF CITATIONS
SEARCH DETAIL