Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Semin Cell Dev Biol ; 133: 42-52, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35256275

ABSTRACT

Membrane trafficking is a core cellular process that supports diversification of cell shapes and behaviors relevant to morphogenesis during development and in adult organisms. However, how precisely trafficking components regulate specific differentiation programs is incompletely understood. Snap29 is a multifaceted Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor, involved in a wide range of trafficking and non-trafficking processes in most cells. A body of knowledge, accrued over more than two decades since its discovery, reveals that Snap29 is essential for establishing and maintaining the operation of a number of cellular events that support cell polarity and signaling. In this review, we first summarize established functions of Snap29 and then we focus on novel ones in the context of autophagy, Golgi trafficking and vesicle fusion at the plasma membrane, as well as on non-trafficking activities of Snap29. We further describe emerging evidence regarding the compartmentalisation and regulation of Snap29. Finally, we explore how the loss of distinct functions of human Snap29 may lead to the clinical manifestations of congenital disorders such as CEDNIK syndrome and how altered SNAP29 activity may contribute to the pathogenesis of cancer, viral infection and neurodegenerative diseases.


Subject(s)
Keratoderma, Palmoplantar , Neurocutaneous Syndromes , Humans , Qc-SNARE Proteins/genetics , Qc-SNARE Proteins/metabolism , Qb-SNARE Proteins/genetics , Qb-SNARE Proteins/metabolism , Keratoderma, Palmoplantar/metabolism , Keratoderma, Palmoplantar/pathology , Neurocutaneous Syndromes/metabolism , Neurocutaneous Syndromes/pathology , Morphogenesis
2.
Neuropathol Appl Neurobiol ; 48(5): e12818, 2022 08.
Article in English | MEDLINE | ID: mdl-35501124

ABSTRACT

AIM: Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. METHODS: By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. RESULTS: We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. CONCLUSION: Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy.


Subject(s)
Adenosine Triphosphatases , Cell Cycle Proteins , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Autophagy/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Lysosomes/metabolism , Motor Neurons/metabolism , Transcriptional Activation , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
3.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807238

ABSTRACT

The short-chain fatty acid butyrate, produced by the gut microbiota, acts as a potent histone deacetylase (HDAC) inhibitor. We assessed possible ameliorative effects of butyrate, relative to other HDAC inhibitors, in in vitro and in vivo models of Rubinstein-Taybi syndrome (RSTS), a severe neurodevelopmental disorder caused by variants in the genes encoding the histone acetyltransferases CBP and p300. In RSTS cell lines, butyrate led to the patient-specific rescue of acetylation defects at subtoxic concentrations. Remarkably, we observed that the commensal gut microbiota composition in a cohort of RSTS patients is significantly depleted in butyrate-producing bacteria compared to healthy siblings. We demonstrate that the effects of butyrate and the differences in microbiota composition are conserved in a Drosophila melanogaster mutant for CBP, enabling future dissection of the gut-host interactions in an in vivo RSTS model. This study sheds light on microbiota composition in a chromatinopathy, paving the way for novel therapeutic interventions.


Subject(s)
Butyrates/metabolism , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/microbiology , Acetylation , Adolescent , Animals , Butyrates/pharmacology , CREB-Binding Protein/metabolism , Child , Child, Preschool , Cohort Studies , Disease Models, Animal , Drosophila melanogaster/metabolism , E1A-Associated p300 Protein/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/physiology , Female , Gastrointestinal Microbiome/physiology , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Mutation , Protein Processing, Post-Translational , p300-CBP Transcription Factors/metabolism
4.
Semin Cell Dev Biol ; 74: 29-39, 2018 02.
Article in English | MEDLINE | ID: mdl-28847745

ABSTRACT

ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Signal Transduction , Animals , Biological Transport , Cell Membrane/metabolism , Cell Nucleus/metabolism , Central Nervous System/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Humans , Signal Transduction/genetics
5.
Dev Biol ; 455(1): 100-111, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31283922

ABSTRACT

During development, ribosome biogenesis and translation reach peak activities, due to impetuous cell proliferation. Current models predict that protein synthesis elevation is controlled by transcription factors and signalling pathways. Developmental models addressing translation factors overexpression effects are lacking. Eukaryotic Initiation Factor 6 (eIF6) is necessary for ribosome biogenesis and efficient translation. eIF6 is a single gene, conserved from yeasts to mammals, suggesting a tight regulation need. We generated a Drosophila melanogaster model of eIF6 upregulation, leading to a boost in general translation and the shut-down of the ecdysone biosynthetic pathway. Indeed, translation modulation in S2 cells showed that translational rate and ecdysone biosynthesis are inversely correlated. In vivo, eIF6-driven alterations delayed Programmed Cell Death (PCD), resulting in aberrant phenotypes, partially rescued by ecdysone administration. Our data show that eIF6 triggers a translation program with far-reaching effects on metabolism and development, stressing the driving and central role of translation.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Ecdysone/biosynthesis , Gene Expression Regulation, Developmental , Peptide Initiation Factors/genetics , Protein Biosynthesis/genetics , Animals , Animals, Genetically Modified , Apoptosis/genetics , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Peptide Initiation Factors/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
6.
EMBO J ; 35(20): 2223-2237, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27647876

ABSTRACT

The kinetochore is an essential structure that mediates accurate chromosome segregation in mitosis and meiosis. While many of the kinetochore components have been identified, the mechanisms of kinetochore assembly remain elusive. Here, we identify a novel role for Snap29, an unconventional SNARE, in promoting kinetochore assembly during mitosis in Drosophila and human cells. Snap29 localizes to the outer kinetochore and prevents chromosome mis-segregation and the formation of cells with fragmented nuclei. Snap29 promotes accurate chromosome segregation by mediating the recruitment of Knl1 at the kinetochore and ensuring stable microtubule attachments. Correct Knl1 localization to kinetochore requires human or Drosophila Snap29, and is prevented by a Snap29 point mutant that blocks Snap29 release from SNARE fusion complexes. Such mutant causes ectopic Knl1 recruitment to trafficking compartments. We propose that part of the outer kinetochore is functionally similar to membrane fusion interfaces.


Subject(s)
Drosophila Proteins/metabolism , Kinetochores/metabolism , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Animals , Cell Line , Drosophila , Drosophila Proteins/genetics , HeLa Cells , Humans , Microtubule-Associated Proteins/metabolism , Mitosis , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , SNARE Proteins/genetics
7.
Adv Exp Med Biol ; 1066: 187-204, 2018.
Article in English | MEDLINE | ID: mdl-30030827

ABSTRACT

Non-canonical Notch signaling encompasses a wide range of cellular processes, diverging considerably from the established paradigm. It can dispense of ligand, proteolytic or nuclear activity. Non-canonical Notch signaling events have been studied mostly in the fruit fly Drosophila melanogaster, the organism in which Notch was identified first and a powerful model for understanding signaling outcomes. However, non-canonical events are ill-defined and their involvement in human physiology is not clear, hampering our understanding of diseases arising from Notch signaling alterations. At a time in which therapies based on specific targeting of Notch signaling are still an unfulfilled promise, detailed understanding of non-canonical Notch events might be key to devising more specific and less toxic pharmacologic options. Based on the blueprint of non-canonical signaling in Drosophila, here, we review and rationalize current evidence about non-canonical Notch signaling. Our effort might inform Notch biologists developing new research avenues and clinicians seeking future treatment of Notch-dependent diseases.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Animals , Drosophila melanogaster , Genetic Diseases, Inborn/therapy , Humans
8.
EMBO Rep ; 13(8): 670-2, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22777496

ABSTRACT

The ESF-EMBO meeting on 'Cell Polarity and Membrane Traffic' took place in Poland in April 2012. It brought together scientists from two once separate fields and highlighted their emerging interdependence. The wealth of scientific insights and discoveries presented laid a path for future research.


Subject(s)
Cell Membrane/metabolism , Cell Polarity , Adaptor Proteins, Signal Transducing , Animals , Biological Transport , Cadherins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Cytoskeleton/metabolism , Dogs , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Phospholipids/metabolism
9.
Cells ; 13(2)2024 01 17.
Article in English | MEDLINE | ID: mdl-38247869

ABSTRACT

Protein homeostasis is essential for neuron longevity, requiring a balanced regulation between protein synthesis and degradation. The clearance of misfolded and aggregated proteins, mediated by autophagy and the ubiquitin-proteasome systems, maintains protein homeostasis in neurons, which are post-mitotic and thus cannot use cell division to diminish the burden of misfolded proteins. When protein clearance pathways are overwhelmed or otherwise disrupted, the accumulation of misfolded or aggregated proteins can lead to the activation of ER stress and the formation of stress granules, which predominantly attempt to restore the homeostasis by suppressing global protein translation. Alterations in these processes have been widely reported among studies investigating the toxic function of dipeptide repeats (DPRs) produced by G4C2 expansion in the C9orf72 gene of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review, we outline the modalities of DPR-induced disruptions in protein homeostasis observed in a wide range of models of C9orf72-linked ALS/FTD. We also discuss the relative importance of each DPR for toxicity, possible synergies between DPRs, and discuss the possible functional relevance of DPR aggregation to disease pathogenesis. Finally, we highlight the interdependencies of the observed effects and reflect on the importance of feedback and feedforward mechanisms in their contribution to disease progression. A better understanding of DPR-associated disease pathogenesis discussed in this review might shed light on disease vulnerabilities that may be amenable with therapeutic interventions.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Proteostasis , Humans , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Dipeptides , Frontotemporal Dementia/genetics
10.
Development ; 137(11): 1825-32, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20460366

ABSTRACT

Evidence indicates that endosomal entry promotes signaling by the Notch receptor, but the mechanisms involved are not clear. In a search for factors that regulate Notch activation in endosomes, we isolated mutants in Drosophila genes that encode subunits of the vacuolar ATPase (V-ATPase) proton pump. Cells lacking V-ATPase function display impaired acidification of the endosomal compartment and a correlated failure to degrade endocytic cargoes. V-ATPase mutant cells internalize Notch and accumulate it in the lysosome, but surprisingly also show a substantial loss of both physiological and ectopic Notch activation in endosomes. V-ATPase activity is required in signal-receiving cells for Notch signaling downstream of ligand activation but upstream of gamma-secretase-dependent S3 cleavage. These data indicate that V-ATPase, probably via acidification of early endosomes, promotes not only the degradation of Notch in the lysosome but also the activation of Notch signaling in endosomes. The results also suggest that the ionic properties of the endosomal lumen might regulate Notch cleavage, providing a rationale for physiological as well as pathological endocytic control of Notch activity.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Receptors, Notch/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Animals, Genetically Modified , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Endosomes/metabolism , Eye/growth & development , Eye/metabolism , Eye/ultrastructure , Genes, Insect , Hydrogen-Ion Concentration , Lysosomes/metabolism , Microscopy, Electron, Transmission , Mutation , Receptors, Notch/genetics , Signal Transduction , Vacuolar Proton-Translocating ATPases/genetics
12.
Nat Commun ; 14(1): 5667, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704604

ABSTRACT

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.


Subject(s)
Drosophila , Lipolysis , Animals , Drosophila/genetics , Adipose Tissue , Enterocytes , Lipids
13.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066398

ABSTRACT

Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of infectious versus non-infectious mechanisms on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N -glycanase 1 (Pngl) leads to gut barrier defects, which cause starvation and increased JNK activity. These defects result in Foxo overactivation, which induces a hyperactive innate immune response and lipid catabolism, thereby contributing to lethality associated with loss of Pngl . Notably, germ-free rearing of Pngl mutants did not rescue lethality. In contrast, raising Pngl mutants on isocaloric, fat-rich diets improved animal survival in a dosage-dependent manner. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the immune and metabolic consequences of loss of Pngl are primarily mediated through non-infectious mechanisms.

14.
Autophagy ; 19(2): 660-677, 2023 02.
Article in English | MEDLINE | ID: mdl-35867714

ABSTRACT

Synapses represent an important target of Alzheimer disease (AD), and alterations of their excitability are among the earliest changes associated with AD development. Synaptic activation has been shown to be protective in models of AD, and deep brain stimulation (DBS), a surgical strategy that modulates neuronal activity to treat neurological and psychiatric disorders, produced positive effects in AD patients. However, the molecular mechanisms underlying the protective role(s) of brain stimulation are still elusive. We have previously demonstrated that induction of synaptic activity exerts protection in mouse models of AD and frontotemporal dementia (FTD) by enhancing the macroautophagy/autophagy flux and lysosomal degradation of pathological MAPT/Tau. We now provide evidence that TFEB (transcription factor EB), a master regulator of lysosomal biogenesis and autophagy, is a key mediator of this cellular response. In cultured primary neurons from FTD-transgenic mice, synaptic stimulation inhibits MTORC1 signaling, thus promoting nuclear translocation of TFEB, which, in turn, induces clearance of MAPT/Tau oligomers. Conversely, synaptic activation fails to promote clearance of toxic MAPT/Tau in neurons expressing constitutively active RRAG GTPases, which sequester TFEB in the cytosol, or upon TFEB depletion. Activation of TFEB is also confirmed in vivo in DBS-stimulated AD mice. We also demonstrate that DBS reduces pathological MAPT/Tau and promotes neuroprotection in Parkinson disease patients with tauopathy. Altogether our findings indicate that stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau. This mechanism, underlying the protective effect of DBS, provides encouraging support for the use of synaptic stimulation as a therapeutic treatment against tauopathies.Abbreviations: 3xTg-AD: triple transgenic AD mice; AD: Alzheimer disease; CSA: cyclosporine A; DBS: deep brain stimulation; DIV: days in vitro; EC: entorhinal cortex; FTD: frontotemporal dementia; gLTP: glycine-induced long-term potentiation; GPi: internal segment of the globus pallidus; PD: Parkinson disease; STN: subthalamic nucleus; TFEB: transcription factor EB.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Parkinson Disease , Tauopathies , Mice , Animals , Alzheimer Disease/metabolism , Frontotemporal Dementia/metabolism , Parkinson Disease/metabolism , Autophagy , Tauopathies/metabolism , Mice, Transgenic , Lysosomes/metabolism , Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , tau Proteins/metabolism
15.
Cell Death Dis ; 13(11): 1003, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36435842

ABSTRACT

The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.


Subject(s)
Drosophila , Neuropeptides , Animals , Humans , Drosophila/metabolism , Drosophila melanogaster/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , 14-3-3 Proteins/metabolism , Neuropeptides/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
16.
Autophagy ; 17(12): 4442-4452, 2021 12.
Article in English | MEDLINE | ID: mdl-33978540

ABSTRACT

Glioblastoma (GBM), a very aggressive and incurable tumor, often results from constitutive activation of EGFR (epidermal growth factor receptor) and of phosphoinositide 3-kinase (PI3K). To understand the role of autophagy in the pathogenesis of glial tumors in vivo, we used an established Drosophila melanogaster model of glioma based on overexpression in larval glial cells of an active human EGFR and of the PI3K homolog Pi3K92E/Dp110. Interestingly, the resulting hyperplastic glia express high levels of key components of the lysosomal-autophagic compartment, including vacuolar-type H+-ATPase (V-ATPase) subunits and ref(2)P (refractory to Sigma P), the Drosophila homolog of SQSTM1/p62. However, cellular clearance of autophagic cargoes appears inhibited upstream of autophagosome formation. Remarkably, downregulation of subunits of V-ATPase, of Pdk1, or of the Tor (Target of rapamycin) complex 1 (TORC1) component raptor prevents overgrowth and normalize ref(2)P levels. In addition, downregulation of the V-ATPase subunit VhaPPA1-1 reduces Akt and Tor-dependent signaling and restores clearance. Consistent with evidence in flies, neurospheres from patients with high V-ATPase subunit expression show inhibition of autophagy. Altogether, our data suggest that autophagy is repressed during glial tumorigenesis and that V-ATPase and MTORC1 components acting at lysosomes could represent therapeutic targets against GBM.


Subject(s)
Neoplasms , Vacuolar Proton-Translocating ATPases , Animals , Autophagy/genetics , Drosophila/metabolism , Drosophila melanogaster/metabolism , Humans , Lysosomes/metabolism , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
17.
Front Cell Dev Biol ; 9: 637565, 2021.
Article in English | MEDLINE | ID: mdl-33718375

ABSTRACT

Snap29 is a conserved regulator of membrane fusion essential to complete autophagy and to support other cellular processes, including cell division. In humans, inactivating SNAP29 mutations causes CEDNIK syndrome, a rare multi-systemic disorder characterized by congenital neuro-cutaneous alterations. The fibroblasts of CEDNIK patients show alterations of the Golgi apparatus (GA). However, whether and how Snap29 acts at the GA is unclear. Here we investigate SNAP29 function at the GA and endoplasmic reticulum (ER). As part of the elongated structures in proximity to these membrane compartments, a pool of SNAP29 forms a complex with Syntaxin18, or with Syntaxin5, which we find is required to engage SEC22B-loaded vesicles. Consistent with this, in HeLa cells, in neuroepithelial stem cells, and in vivo, decreased SNAP29 activity alters GA architecture and reduces ER to GA trafficking. Our data reveal a new regulatory function of Snap29 in promoting secretory trafficking.

18.
J Biophotonics ; 14(3): e202000396, 2021 03.
Article in English | MEDLINE | ID: mdl-33295053

ABSTRACT

We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual-sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates.


Subject(s)
Drosophila , Microfluidics , Animals , Lasers , Microscopy, Fluorescence , Microtechnology
19.
Nat Commun ; 12(1): 5488, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531401

ABSTRACT

Specialised ribonucleoprotein (RNP) granules are a hallmark of polarized cells, like neurons and germ cells. Among their main functions is the spatial and temporal modulation of the activity of specific mRNA transcripts that allow specification of primary embryonic axes. While RNPs composition and role are well established, their regulation is poorly defined. Here, we demonstrate that Hecw, a newly identified Drosophila ubiquitin ligase, is a key modulator of RNPs in oogenesis and neurons. Hecw depletion leads to the formation of enlarged granules that transition from a liquid to a gel-like state. Loss of Hecw activity results in defective oogenesis, premature aging and climbing defects associated with neuronal loss. At the molecular level, reduced ubiquitination of the Fmrp impairs its translational repressor activity, resulting in altered Orb expression in nurse cells and Profilin in neurons.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Oogenesis/genetics , Ribonucleoproteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Cytoplasmic Granules/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Homeostasis/genetics , Longevity/genetics , Neurons/cytology , Neurons/metabolism , Oocytes/cytology , Oocytes/metabolism , Phase Transition , Profilins/genetics , Profilins/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
20.
Cell Death Discov ; 7(1): 34, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597506

ABSTRACT

Cornelia de Lange Syndrome (CdLS) is a rare developmental disorder affecting a multitude of organs including the central nervous system, inducing a variable neurodevelopmental delay. CdLS malformations derive from the deregulation of developmental pathways, inclusive of the canonical WNT pathway. We have evaluated MRI anomalies and behavioral and neurological clinical manifestations in CdLS patients. Importantly, we observed in our cohort a significant association between behavioral disturbance and structural abnormalities in brain structures of hindbrain embryonic origin. Considering the cumulative evidence on the cohesin-WNT-hindbrain shaping cascade, we have explored possible ameliorative effects of chemical activation of the canonical WNT pathway with lithium chloride in different models: (I) Drosophila melanogaster CdLS model showing a significant rescue of mushroom bodies morphology in the adult flies; (II) mouse neural stem cells restoring physiological levels in proliferation rate and differentiation capabilities toward the neuronal lineage; (III) lymphoblastoid cell lines from CdLS patients and healthy donors restoring cellular proliferation rate and inducing the expression of CyclinD1. This work supports a role for WNT-pathway regulation of CdLS brain and behavioral abnormalities and a consistent phenotype rescue by lithium in experimental models.

SELECTION OF CITATIONS
SEARCH DETAIL