Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell ; 185(5): 815-830.e19, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35148838

ABSTRACT

Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.


Subject(s)
Hydroxyindoleacetic Acid/metabolism , Neutrophils , Receptors, G-Protein-Coupled/metabolism , Animals , Inflammation/metabolism , Ligands , Mice , Neutrophil Infiltration , Neutrophils/metabolism , Serotonin/metabolism
3.
Nature ; 566(7744): 383-387, 2019 02.
Article in English | MEDLINE | ID: mdl-30760925

ABSTRACT

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Hematopoiesis/physiology , Sleep/physiology , Animals , Antigens, Ly/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Bone Marrow Cells/metabolism , Female , Hematopoiesis/drug effects , Hypothalamic Area, Lateral/metabolism , Macrophage Colony-Stimulating Factor/biosynthesis , Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Monocytes/drug effects , Monocytes/metabolism , Myelopoiesis/drug effects , Neutrophils/metabolism , Orexin Receptors/deficiency , Orexin Receptors/metabolism , Orexins/biosynthesis , Orexins/deficiency , Orexins/metabolism , Orexins/pharmacology , Sleep/drug effects , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/prevention & control
4.
Nature ; 566(7742): 115-119, 2019 02.
Article in English | MEDLINE | ID: mdl-30700910

ABSTRACT

The biochemical response to food intake must be precisely regulated. Because ingested sugars and fats can feed into many anabolic and catabolic pathways1, how our bodies handle nutrients depends on strategically positioned metabolic sensors that link the intrinsic nutritional value of a meal with intermediary metabolism. Here we describe a subset of immune cells-integrin ß7+ natural gut intraepithelial T lymphocytes (natural IELs)-that is dispersed throughout the enterocyte layer of the small intestine and that modulates systemic metabolism. Integrin ß7- mice that lack natural IELs are metabolically hyperactive and, when fed a high-fat and high-sugar diet, are resistant to obesity, hypercholesterolaemia, hypertension, diabetes and atherosclerosis. Furthermore, we show that protection from cardiovascular disease in the absence of natural IELs depends on the enteroendocrine-derived incretin GLP-12, which is normally controlled by IELs through expression of the GLP-1 receptor. In this metabolic control system, IELs modulate enteroendocrine activity by acting as gatekeepers that limit the bioavailability of GLP-1. Although the function of IELs may prove advantageous when food is scarce, present-day overabundance of diets high in fat and sugar renders this metabolic checkpoint detrimental to health.


Subject(s)
Cardiovascular Diseases/metabolism , Disease Progression , Intestine, Small/cytology , Intraepithelial Lymphocytes/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Disease Models, Animal , Eating , Enterocytes/cytology , Enterocytes/metabolism , Female , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Male , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/prevention & control , Mice
5.
Blood ; 130(18): 2032-2042, 2017 11 02.
Article in English | MEDLINE | ID: mdl-28903944

ABSTRACT

To uncover the role of Vps34, the sole class III phosphoinositide 3-kinase (PI3K), in megakaryocytes (MKs) and platelets, we created a mouse model with Vps34 deletion in the MK/platelet lineage (Pf4-Cre/Vps34lox/lox). Deletion of Vps34 in MKs led to the loss of its regulator protein, Vps15, and was associated with microthrombocytopenia and platelet granule abnormalities. Although Vps34 deficiency did not affect MK polyploidisation or proplatelet formation, it dampened MK granule biogenesis and directional migration toward an SDF1α gradient, leading to ectopic platelet release within the bone marrow. In MKs, the level of phosphatidylinositol 3-monophosphate (PI3P) was significantly reduced by Vps34 deletion, resulting in endocytic/trafficking defects. In platelets, the basal level of PI3P was only slightly affected by Vps34 loss, whereas the stimulation-dependent pool of PI3P was significantly decreased. Accordingly, a significant increase in the specific activity of Vps34 lipid kinase was observed after acute platelet stimulation. Similar to Vps34-deficient platelets, ex vivo treatment of wild-type mouse or human platelets with the Vps34-specific inhibitors, SAR405 and VPS34-IN1, induced abnormal secretion and affected thrombus growth at arterial shear rate, indicating a role for Vps34 kinase activity in platelet activation, independent from its role in MKs. In vivo, Vps34 deficiency had no impact on tail bleeding time, but significantly reduced platelet prothrombotic capacity after carotid injury. This study uncovers a dual role for Vps34 as a regulator of platelet production by MKs and as an unexpected regulator of platelet activation and arterial thrombus formation dynamics.


Subject(s)
Blood Platelets/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thrombosis/enzymology , Thrombosis/pathology , Animals , Cell Lineage , Cell Movement , Cytoplasmic Granules/metabolism , Intracellular Space/metabolism , Megakaryocytes/metabolism , Megakaryocytes/ultrastructure , Mice, Inbred C57BL , Phosphatidylinositol Phosphates/metabolism , Protein Transport , Reproducibility of Results , Thrombocytopenia/pathology
6.
Blood ; 126(9): 1128-37, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26109204

ABSTRACT

The physiologic roles of the class II phosphoinositide 3-kinases (PI3Ks) and their contributions to phosphatidylinositol 3-monophosphate (PI3P) and PI(3,4)P2 production remain elusive. Here we report that mice heterozygous for a constitutively kinase-dead PI3K-C2α display aberrant platelet morphology with an elevated number of barbell-shaped proplatelets, a recently discovered intermediate stage in the final process of platelet production. Platelets with heterozygous PI3K-C2α inactivation have critical defects in α-granules and membrane structure that are associated with modifications in megakaryocytes. These platelets are more rigid and unable to form filopodia after stimulation. Heterozygous PI3K-C2α inactivation in platelets led to a significant reduction in the basal pool of PI3P and a mislocalization of several membrane skeleton proteins known to control the interactions between the plasma membrane and cytoskeleton. These alterations had repercussions on the performance of platelet responses with delay in the time of arterial occlusion in an in vivo model of thrombosis and defect in thrombus formation in an ex vivo blood flow system. These data uncover a key role for PI3K-C2α activity in the generation of a basal housekeeping PI3P pool and in the control of membrane remodeling, critical for megakaryocytopoiesis and normal platelet production and function.


Subject(s)
Blood Platelets/pathology , Cell Membrane/pathology , Mutation , Phosphatidylinositol 3-Kinases/genetics , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Gene Knock-In Techniques , Heterozygote , Lipid Metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Thrombopoiesis
7.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35192546

ABSTRACT

Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.


Subject(s)
Blood Platelets , Sepsis , Animals , Blood Platelets/metabolism , CD40 Ligand , Megakaryocytes , Sepsis/metabolism , Spleen
8.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-35132956

ABSTRACT

Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.


Subject(s)
ADAM Proteins/genetics , Antigens, CD/genetics , Gene Expression Regulation , Membrane Proteins/genetics , RNA/genetics , Respiratory Distress Syndrome/genetics , ADAM Proteins/biosynthesis , Animals , Antigens, CD/biosynthesis , Cells, Cultured , Disease Models, Animal , Humans , Male , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology
9.
JCI Insight ; 7(24)2022 12 22.
Article in English | MEDLINE | ID: mdl-36346670

ABSTRACT

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , NK Cell Lectin-Like Receptor Subfamily K , Primary Graft Dysfunction/etiology , Tumor Necrosis Factor-alpha , Lung Transplantation/adverse effects , Lung/metabolism
10.
Res Pract Thromb Haemost ; 4(4): 491-499, 2020 May.
Article in English | MEDLINE | ID: mdl-32548550

ABSTRACT

Phosphoinositides are lipid second messengers regulating in time and place the formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking, and cytoskeleton/membrane dynamics. One of these lipids, phosphatidylinositol 3 monophosphate (PtdIns3P), is present in small amounts in mammalian cells and is involved in the control of endocytic/endosomal trafficking and in autophagy. Its metabolism is finely regulated by specific kinases and phosphatases including class II phosphoinositide 3-kinases (PI3KC2s) and the class III PI3K, Vps34. Recently, PtdIns3P has emerged as an important regulator of megakaryocyte/platelet structure and functions. Here, we summarize the current knowledge in the role of different pools of PtdIns3P regulated by class II and III PI3Ks in platelet production and thrombosis. Potential new antithrombotic therapeutic perspectives based on the use of inhibitors targeting specifically PtdIns3P-metabolizing enzymes will also be discussed. Finally, we provide report of new research in this area presented at the International Society of Thrombosis and Haemostasis 2019 Annual Congress.

11.
Cell Rep ; 32(1): 107875, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640240

ABSTRACT

Megakaryocytes (MKs) come from a complex process of hematopoietic progenitor maturation within the bone marrow that gives rise to de novo circulating platelets. Bone marrow microenvironment contains a large number of adipocytes with a still ill-defined role. This study aims to analyze the influence of adipocytes and increased medullar adiposity in megakaryopoiesis. An in vivo increased medullar adiposity in mice caused by high-fat-diet-induced obesity is associated to an enhanced MK maturation and proplatelet formation. In vitro co-culture of adipocytes with bone marrow hematopoietic progenitors shows that delipidation of adipocytes directly supports MK maturation by enhancing polyploidization, amplifying the demarcation membrane system, and accelerating proplatelet formation. This direct crosstalk between adipocytes and MKs occurs through adipocyte fatty acid transfer to MKs involving CD36 to reinforce megakaryocytic maturation. Thus, these findings unveil an influence of adiposity on MK homeostasis based on a dialogue between adipocytes and MKs.


Subject(s)
Adipocytes/metabolism , Cell Differentiation , Fatty Acids/metabolism , Megakaryocytes/cytology , Animals , Blood Platelets/metabolism , CD36 Antigens/metabolism , Diet, High-Fat , Male , Megakaryocytes/metabolism , Mice, Inbred C57BL , Mice, Obese , Platelet Activation
12.
J Clin Invest ; 130(4): 2041-2053, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31961827

ABSTRACT

Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.


Subject(s)
Blood Platelets/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Lung/metabolism , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Animals , Blood Platelets/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Male , Mice , Mice, Knockout , Platelet Activation/genetics , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/pathology , Pseudomonas Infections/genetics , Pseudomonas Infections/pathology , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism
13.
J Exp Med ; 217(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32716519

ABSTRACT

The thymus is a primary lymphoid organ necessary for optimal T cell development. Here, we show that liver X receptors (LXRs)-a class of nuclear receptors and transcription factors with diverse functions in metabolism and immunity-critically contribute to thymic integrity and function. LXRαß-deficient mice develop a fatty, rapidly involuting thymus and acquire a shrunken and prematurely immunoinhibitory peripheral T cell repertoire. LXRαß's functions are cell specific, and the resulting phenotypes are mutually independent. Although thymic macrophages require LXRαß for cholesterol efflux, thymic epithelial cells (TECs) use LXRαß for self-renewal and thymocytes for negative selection. Consequently, TEC-derived LXRαß protects against homeostatic premature involution and orchestrates thymic regeneration following stress, while thymocyte-derived LXRαß limits cell disposal during negative selection and confers heightened sensitivity to experimental autoimmune encephalomyelitis. These results identify three distinct but complementary mechanisms by which LXRαß governs T lymphocyte education and illuminate LXRαß's indispensable roles in adaptive immunity.


Subject(s)
Liver X Receptors/physiology , Liver/metabolism , T-Lymphocytes/physiology , Thymus Gland/physiology , Adaptive Immunity , Animals , Apoptosis , Female , Flow Cytometry , Homeostasis , Humans , Lipid Metabolism , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , T-Lymphocytes/metabolism , Thymus Gland/metabolism
14.
J Exp Med ; 216(2): 369-383, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30670465

ABSTRACT

Acquisition of self-reactive effector CD4+ T cells is a major component of the autoimmune response that can occur during myocarditis, an inflammatory form of cardiomyopathy. Although the processes by which self-reactive T cells gain effector function have received considerable attention, how these T cells contribute to effector organ inflammation and damage is less clear. Here, we identified an IL-3-dependent amplification loop that exacerbates autoimmune inflammation. In experimental myocarditis, we show that effector organ-accumulating autoreactive IL-3+ CD4+ T cells stimulate IL-3R+ tissue macrophages to produce monocyte-attracting chemokines. The newly recruited monocytes differentiate into antigen-presenting cells that stimulate local IL-3+ CD4+ T cell proliferation, thereby amplifying organ inflammation. Consequently, Il3 -/- mice resist developing robust autoimmune inflammation and myocardial dysfunction, whereas therapeutic IL-3 targeting ameliorates disease. This study defines a mechanism that orchestrates inflammation in myocarditis, describes a previously unknown function for IL-3, and identifies IL-3 as a potential therapeutic target in patients with myocarditis.


Subject(s)
Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Chemotaxis/immunology , Interleukin-3/immunology , Monocytes/immunology , Myocarditis/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation , Chemotaxis/genetics , Interleukin-3/genetics , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Monocytes/pathology , Myocarditis/genetics , Myocarditis/pathology
15.
Nat Commun ; 8(1): 1804, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180704

ABSTRACT

Vps34 PI3K is thought to be the main producer of phosphatidylinositol-3-monophosphate, a lipid that controls intracellular vesicular trafficking. The organismal impact of systemic inhibition of Vps34 kinase activity is not completely understood. Here we show that heterozygous Vps34 kinase-dead mice are healthy and display a robustly enhanced insulin sensitivity and glucose tolerance, phenotypes mimicked by a selective Vps34 inhibitor in wild-type mice. The underlying mechanism of insulin sensitization is multifactorial and not through the canonical insulin/Akt pathway. Vps34 inhibition alters cellular energy metabolism, activating the AMPK pathway in liver and muscle. In liver, Vps34 inactivation mildly dampens autophagy, limiting substrate availability for mitochondrial respiration and reducing gluconeogenesis. In muscle, Vps34 inactivation triggers a metabolic switch from oxidative phosphorylation towards glycolysis and enhanced glucose uptake. Our study identifies Vps34 as a new drug target for insulin resistance in Type-2 diabetes, in which the unmet therapeutic need remains substantial.


Subject(s)
Insulin Resistance , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/physiology , Cell Line, Tumor , Class III Phosphatidylinositol 3-Kinases , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gene Knock-In Techniques , Glucose/analysis , Glucose/metabolism , Glucose Tolerance Test , Glycolysis/physiology , Hepatocytes , Heterozygote , Humans , Insulin/metabolism , Liver/cytology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myoblasts , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Primary Cell Culture
16.
Adv Biol Regul ; 61: 33-41, 2016 05.
Article in English | MEDLINE | ID: mdl-26714793

ABSTRACT

Blood platelets play a pivotal role in haemostasis and are strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their critical role in pathophysiology, platelets represent a valuable model to investigate, both in vitro and in vivo, the biological roles of different branches of the phosphoinositide metabolism, which is highly active in platelets. While the phospholipase C (PLC) pathway has a crucial role in platelet activation, it is now well established that at least one class I phosphoinositide 3-kinase (PI3K) is also mandatory for proper platelet functions. Except class II PI3Kγ, all other isoforms of PI3Ks (class I α, ß, γ, δ; class II α, ß and class III) are expressed in platelets. Class I PI3Ks have been extensively studied in different models over the past few decades and several isoforms are promising drug targets to treat cancer and immune diseases. In platelet activation, it has been shown that while class I PI3Kδ plays a minor role, class I PI3Kß has an important function particularly in thrombus growth and stability under high shear stress conditions found in stenotic arteries. This class I PI3K is a potentially interesting target for antithrombotic strategies. The role of class I PI3Kα remains ill defined in platelets. Herein, we will discuss our recent data showing the potential impact of inhibitors of this kinase on thrombus formation. The role of class II PI3Kα and ß as well as class III PI3K (Vps34) in platelet production and function is just emerging. Based on our data and those very recently published in the literature, we will discuss the impact of these three PI3K isoforms in platelet production and functions and in thrombosis.


Subject(s)
Blood Platelets/enzymology , Phosphatidylinositol 3-Kinases/genetics , Platelet Activation/physiology , Protein Subunits/genetics , Thrombosis/genetics , Animals , Blood Platelets/cytology , Blood Platelets/drug effects , Gene Expression Regulation , Hemostasis/genetics , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/classification , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphatidylinositol 3-Kinases/classification , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Phosphoinositide-3 Kinase Inhibitors , Platelet Activation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Subunits/antagonists & inhibitors , Protein Subunits/classification , Protein Subunits/metabolism , Signal Transduction , Thrombopoiesis/genetics , Thrombosis/enzymology , Thrombosis/pathology , Type C Phospholipases/genetics , Type C Phospholipases/metabolism
17.
Biochimie ; 125: 250-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26391221

ABSTRACT

By interacting specifically with proteins, phosphoinositides organize the spatiotemporal formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking and cytoskeleton dynamics. A set of specific kinases and phosphatases ensures the production, degradation and inter-conversion of phosphoinositides to achieve a high level of precision in the regulation of cellular dynamics coordinated by these lipids. The direct involvement of these enzymes in cancer, genetic or infectious diseases, and the recent arrival of inhibitors targeting specific phosphoinositide kinases in clinic, emphasize the importance of these lipids and their metabolism in the biomedical field.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Phosphatidylinositols/metabolism , Signal Transduction , 1-Phosphatidylinositol 4-Kinase/genetics , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Humans , Infections/genetics , Infections/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Phosphatidylinositols/genetics
18.
Cell Rep ; 13(9): 1881-94, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26655903

ABSTRACT

In contrast to the class I phosphoinositide 3-kinases (PI3Ks), the organismal roles of the kinase activity of the class II PI3Ks are less clear. Here, we report that class II PI3K-C2ß kinase-dead mice are viable and healthy but display an unanticipated enhanced insulin sensitivity and glucose tolerance, as well as protection against high-fat-diet-induced liver steatosis. Despite having a broad tissue distribution, systemic PI3K-C2ß inhibition selectively enhances insulin signaling only in metabolic tissues. In a primary hepatocyte model, basal PI3P lipid levels are reduced by 60% upon PI3K-C2ß inhibition. This results in an expansion of the very early APPL1-positive endosomal compartment and altered insulin receptor trafficking, correlating with an amplification of insulin-induced, class I PI3K-dependent Akt signaling, without impacting MAPK activity. These data reveal PI3K-C2ß as a critical regulator of endosomal trafficking, specifically in insulin signaling, and identify PI3K-C2ß as a potential drug target for insulin sensitization.


Subject(s)
Class II Phosphatidylinositol 3-Kinases/metabolism , Insulin/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy , Blood Glucose/analysis , Cells, Cultured , Class II Phosphatidylinositol 3-Kinases/genetics , Diet, High-Fat , Endosomes/metabolism , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Knock-In Techniques , Hepatocytes/cytology , Hepatocytes/metabolism , Insulin/blood , Liver/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL