Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Cell ; 186(16): 3499-3518.e14, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37437571

ABSTRACT

Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.


Subject(s)
Biosynthetic Pathways , Chlamydomonas reinhardtii , Chloroplast Proteins , Chlamydomonas reinhardtii/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL