Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nucleic Acids Res ; 47(D1): D516-D519, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30395310

ABSTRACT

Extracellular vesicles (EVs) are membranous vesicles that are released by both prokaryotic and eukaryotic cells into the extracellular microenvironment. EVs can be categorised as exosomes, ectosomes or shedding microvesicles and apoptotic bodies based on the mode of biogenesis. EVs contain biologically active cargo of nucleic acids, proteins, lipids and metabolites that can be altered based on the precise state of the cell. Vesiclepedia (http://www.microvesicles.org) is a web-based compendium of RNA, proteins, lipids and metabolites that are identified in EVs from both published and unpublished studies. Currently, Vesiclepedia contains data obtained from 1254 EV studies, 38 146 RNA entries, 349 988 protein entries and 639 lipid/metabolite entries. Vesiclepedia is publicly available and allows users to query and download EV cargo based on different search criteria. The mode of EV isolation and characterization, the biophysical and molecular properties and EV-METRIC are listed in the database aiding biomedical scientists in assessing the quality of the EV preparation and the corresponding data obtained. In addition, FunRich-based Vesiclepedia plugin is incorporated aiding users in data analysis.


Subject(s)
Databases, Factual , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Lipids/analysis , Proteins/analysis , RNA/analysis
2.
Nat Methods ; 14(3): 228-232, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28245209

ABSTRACT

We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.


Subject(s)
Biomedical Research , Databases, Bibliographic , Extracellular Vesicles/physiology , Internationality
3.
Biomacromolecules ; 17(1): 119-27, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26650350

ABSTRACT

The lack of selectivity and low solubility of many chemotherapeutics impels the development of different biocompatible nanosized drug carriers. Amphiphilic block copolymers, composed of a hydrophilic and hydrophobic domain, show great potential because of their small size, large solubilizing power and loading capacity. In this paper, we introduce a new class of degradable temperature-responsive block copolymers based on the modification of N-(2-hydroxypropyl)methacrylamide (HPMA) with an ethyl group via a hydrolytically sensitive carbonate ester, polymerized by radical polymerization using a PEG-based macroinitiatior. The micellization and temperature-responsive behavior of the PEG-poly(HPMA-EC) block copolymer were investigated by dynamic light scattering (DLS). We observed that the polymer exhibits lower critical solution temperature (LCST) behavior and that above the cloud point (cp) of 17 °C the block copolymer self-assembles in micelles with a diameter of 40 nm. Flow cytometry analysis and confocal microscopy show a dose-dependent cellular uptake of the micelles loaded with a hydrophobic dye. The block copolymer nanoparticles were capable of delivering the hydrophobic payload into cancer cells in both 2D and 3D in vitro cultures. The block copolymer has excellent cytocompatibility, whereas loading the particles with the hydrophobic anticancer drug paclitaxel results in a dose-dependent decrease in cell viability.


Subject(s)
Acrylamides/chemistry , Polymers/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells , Mice , Micelles , Nanoparticles/chemistry , Paclitaxel/chemistry , Paclitaxel/pharmacology , Particle Size , Polyethylene Glycols/chemistry , Solubility , Temperature
4.
Environ Health ; 15(1): 80, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27460212

ABSTRACT

BACKGROUND: Ultrafine particles (<100 nm) are ubiquitous present in the air and may contribute to adverse cardiovascular effects. Exposure to air pollutants can alter miRNA expression, which can affect downstream signaling pathways. miRNAs are present both in the intracellular and extracellular environment. In adults, miR-222 and miR-146a were identified as associated with particulate matter exposure. However, there is little evidence of molecular effects of ambient air pollution in children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. METHODS: Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. RESULTS: Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI:10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. CONCLUSIONS: Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva.


Subject(s)
Air Pollutants/analysis , MicroRNAs/genetics , Particulate Matter/analysis , Saliva/metabolism , Air Pollution, Indoor/analysis , Child , Environmental Monitoring , Epigenesis, Genetic , Female , Humans , Male , Particle Size
6.
Front Immunol ; 15: 1253072, 2024.
Article in English | MEDLINE | ID: mdl-38846943

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and peritoneal dissemination is one major cause for this poor prognosis. Exosomes have emerged as promising biomarkers for gastrointestinal cancers and can be found in all kinds of bodily fluids, also in peritoneal fluid (PF). This is a unique sample due to its closeness to gastrointestinal malignancies. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) has been identified as a potential biomarker in human cancers and represents a promising target for an immunotherapy approach, which could be considered for future treatment strategies. Here we prospectively analyzed the exosomal surface protein ROR1 (exo-ROR1) in PF in localized PDAC patients (PER-) on the one hand and peritoneal disseminated tumor stages (PER+) on the other hand followed by the correlation of exo-ROR1 with clinical-pathological parameters. Methods: Exosomes were isolated from PF and plasma samples of non-cancerous (NC) (n = 15), chronic pancreatitis (CP) (n = 4), localized PDAC (PER-) (n = 18) and peritoneal disseminated PDAC (PER+) (n = 9) patients and the surface protein ROR1 was detected via FACS analysis. Additionally, soluble ROR1 in PF was analyzed. ROR1 expression in tissue was investigated using western blots (WB), qPCR, and immunohistochemistry (IHC). Exosome isolation was proven by Nano Tracking Analysis (NTA), WB, Transmission electron microscopy (TEM), and BCA protein assay. The results were correlated with clinical data and survival analysis was performed. Results: PDAC (PER+) patients have the highest exo-ROR1 values in PF and can be discriminated from NC (p <0.0001), PDAC (PER-) (p <0.0001), and CP (p = 0.0112). PDAC (PER-) can be discriminated from NC (p = 0.0003). In plasma, exo-ROR1 is not able to distinguish between the groups. While there is no expression of ROR1 in the exocrine pancreatic tissue, PDAC and peritoneal metastasis show expression of ROR1. High exo-ROR1 expression in PF is associated with lower overall survival (p = 0.0482). Conclusion: With exo-ROR1 in PF we found a promising diagnostic and prognostic biomarker possibly discriminating between NC, PDAC (PER-) and PDAC (PER+) and might shed light on future diagnostic and therapeutic concepts in PDAC.


Subject(s)
Ascitic Fluid , Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Exosomes , Pancreatic Neoplasms , Receptor Tyrosine Kinase-like Orphan Receptors , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Exosomes/metabolism , Male , Ascitic Fluid/metabolism , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Female , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Middle Aged , Biomarkers, Tumor/metabolism , Prognosis , Aged , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/mortality , Peritoneal Neoplasms/metabolism , Adult , Prospective Studies
7.
J Extracell Vesicles ; 12(8): e12348, 2023 08.
Article in English | MEDLINE | ID: mdl-37489102

ABSTRACT

Extracellular vesicles (EVs) are increasingly gaining interest as biomarkers and therapeutics. Accurate sizing and quantification of EVs remain problematic, given their nanometre size range and small scattering cross-sections. This is compounded by the fact that common EV isolation methods result in co-isolation of particles with comparable features. Especially in blood plasma, similarly-sized lipoproteins outnumber EVs to a great extent. Recently, interferometric nanoparticle tracking analysis (iNTA) was introduced as a particle analysis method that enables determining the size and refractive index of nanoparticles with high sensitivity and precision. In this work, we apply iNTA to differentiate between EVs and lipoproteins, and compare its performance to conventional nanoparticle tracking analysis (NTA). We show that iNTA can accurately quantify EVs in artificial EV-lipoprotein mixtures and in plasma-derived EV samples of varying complexity. Conventional NTA could not report on EV numbers, as it was not able to distinguish EVs from lipoproteins. iNTA has the potential to become a new standard for label-free EV characterization in suspension.


Subject(s)
Extracellular Vesicles , Nanoparticles , Lipoproteins , Plasma , Biomarkers
8.
Nat Biomed Eng ; 5(7): 678-689, 2021 07.
Article in English | MEDLINE | ID: mdl-34183802

ABSTRACT

Assays for cancer diagnosis via the analysis of biomarkers on circulating extracellular vesicles (EVs) typically have lengthy sample workups, limited throughput or insufficient sensitivity, or do not use clinically validated biomarkers. Here we report the development and performance of a 96-well assay that integrates the enrichment of EVs by antibody-coated magnetic beads and the electrochemical detection, in less than one hour of total assay time, of EV-bound proteins after enzymatic amplification. By using the assay with a combination of antibodies for clinically relevant tumour biomarkers (EGFR, EpCAM, CD24 and GPA33) of colorectal cancer (CRC), we classified plasma samples from 102 patients with CRC and 40 non-CRC controls with accuracies of more than 96%, prospectively assessed a cohort of 90 patients, for whom the burden of tumour EVs was predictive of five-year disease-free survival, and longitudinally analysed plasma from 11 patients, for whom the EV burden declined after surgery and increased on relapse. Rapid assays for the detection of combinations of tumour biomarkers in plasma EVs may aid cancer detection and patient monitoring.


Subject(s)
Colorectal Neoplasms/diagnosis , Electrochemical Techniques/methods , Extracellular Vesicles/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Area Under Curve , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Disease-Free Survival , Epithelial Cell Adhesion Molecule/blood , Epithelial Cell Adhesion Molecule/metabolism , Extracellular Vesicles/immunology , Female , Humans , Kaplan-Meier Estimate , Longitudinal Studies , Male , Middle Aged , Prognosis , ROC Curve , Recurrence , Young Adult
9.
Adv Biosyst ; 4(12): e1900310, 2020 12.
Article in English | MEDLINE | ID: mdl-32351054

ABSTRACT

Purifying extracellular vesicles (EVs) from complex biological fluids is a critical step in analyzing EVs molecularly. Plasma lipoprotein particles (LPPs) are a significant confounding factor as they outnumber EVs >104 -fold. Given their overlap in size, LPPs cannot be completely removed using standard size-exclusion chromatography. Density-based separation of LPPs can be applied but is impractical for routine use in clinical research and practice. Here a new separation approach, known as dual-mode chromatography (DMC), capable of enriching plasma EVs, and depleting LPPs is reported. DMC conveniently integrates two orthogonal separation steps in a single column device: i) size exclusion to remove high-density lipoproteins (HDLs) that are smaller than EVs; and ii) cation exchange to clear positively charged ApoB100-containing LPPs, mostly (very) low-density lipoproteins (V)LDLs, from negatively charged EVs. The strategy enables DMC to deplete most LPPs (>97% of HDLs and >99% of (V)LDLs) from human plasma, while retaining EVs (>30% of input). Furthermore, the two-in-one operation is fast (15 min per sample) and equipment-free. With abundant LPPs removed, DMC-prepared samples facilitate EV identification in imaging analyses and improve the accuracy for EV protein analysis.


Subject(s)
Chromatography, Gel/methods , Extracellular Vesicles , Biomarkers/blood , Humans , Lipoproteins/blood
10.
Cells ; 9(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751082

ABSTRACT

Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future.


Subject(s)
Extracellular Vesicles/metabolism , Metal Nanoparticles/chemistry , Animals , Humans , Mice , Rats
11.
J Extracell Vesicles ; 9(1): 1736935, 2020.
Article in English | MEDLINE | ID: mdl-32284825

ABSTRACT

Extracellular vesicles (EV) are increasingly being recognized as important vehicles of intercellular communication and promising diagnostic and prognostic biomarkers in cancer. Despite this enormous clinical potential, the plethora of methods to separate EV from biofluids, providing material of highly variable purity, and lacking knowledge regarding methodological repeatability pose a barrier to clinical translation. Urine is considered an ideal proximal fluid for the study of EV in urological cancers due to its direct contact with the urogenital system. We demonstrate that density-based fractionation of urine by bottom-up Optiprep density gradient centrifugation separates EV and soluble proteins with high specificity and repeatability. Mass spectrometry-based proteomic analysis of urinary EV (uEV) in men with benign and malignant prostate disease allowed us to significantly expand the known human uEV proteome with high specificity and identifies a unique biological profile in prostate cancer not uncovered by the analysis of soluble proteins. In addition, profiling the proteome of EV separated from prostate tumour conditioned medium and matched uEV confirms the specificity of the identified uEV proteome for prostate cancer. Finally, a comparative proteomic analysis with uEV from patients with bladder and renal cancer provided additional evidence of the selective enrichment of protein signatures in uEV reflecting their respective cancer tissues of origin. In conclusion, this study identifies hundreds of previously undetected proteins in uEV of prostate cancer patients and provides a powerful toolbox to map uEV content and contaminants ultimately allowing biomarker discovery in urological cancers.

12.
J Clin Invest ; 129(11): 4609-4628, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31287804

ABSTRACT

Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRß+ CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11-deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin α11 and PDGFRß was found at both transcriptional and histological levels in BC specimens. High stromal integrin α11/PDGFRß expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using five CAF subpopulations (one murine, four human) revealed that integrin α11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, integrin α11 pro-invasive activity relies on its ability to interact with PDGFRß in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a pro-invasive matricellular protein. Pharmacological inhibition of PDGFRß and JNK impaired tumor cell invasion induced by integrin α11-positive CAFs. Collectively, our study uncovers an integrin α11-positive subset of pro-tumoral CAFs that exploits PDGFRß/JNK signalling axis to promote tumor invasiveness in BC.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Integrin alpha Chains/metabolism , Mammary Neoplasms, Experimental/metabolism , Neoplasm Proteins/metabolism , Receptor, Platelet-Derived Growth Factor beta/biosynthesis , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Female , Humans , Integrin alpha Chains/genetics , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Knockout , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics
13.
Nat Commun ; 10(1): 3288, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337761

ABSTRACT

Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications.


Subject(s)
Extracellular Vesicles/chemistry , Reference Standards , Biomarkers , Biomedical Research/methods , Culture Media, Conditioned , HEK293 Cells , Humans
14.
Clin Exp Metastasis ; 35(8): 715-725, 2018 12.
Article in English | MEDLINE | ID: mdl-30370460

ABSTRACT

Metastasis is key to cancer mortality. Understanding its biology is vital for developing strategies to prevent and treat metastasis. Phenotypic assays to either study metastasis or evaluate anti-metastatic drugs are widely used in preclinical research. This technical note discusses the adherence of reporting essential experimental and methodological parameters in chemotactic invasion assays in vitro and spontaneous metastasis assays in vivo. Following the analysis of 130 recent (< 5 years) research papers, several shortcomings in reporting were identified. Therefore, we strongly argue to increase experimental rigor which should result in a significant improvement with respect to reproducibility of preclinical metastasis research.


Subject(s)
Disease Models, Animal , In Vitro Techniques/standards , Neoplasm Metastasis , Animals , Humans
15.
Int J Biochem Cell Biol ; 99: 236-256, 2018 06.
Article in English | MEDLINE | ID: mdl-29654900

ABSTRACT

Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect an individual's metabolic and pathophysiologic state. Despite intensive research into the discovery of urinary biomarkers to facilitate early diagnosis, accurate prognosis and prediction of therapy response in urological cancers, none of these markers has reached widespread use. Their implementation into daily clinical practice is hampered by a substantial degree of heterogeneity in performance characteristics and uncertainty about reliability, clinical utility and cost-effectiveness, in addition to several technical limitations. Extracellular vesicles (EV) have raised interest as a potential source of biomarker discovery because of their role in intercellular communication and the resemblance of their molecular content to that of the releasing cells. We review currently used urinary biomarkers in the clinic and attempts that have been made to identify EV-derived biomarkers for urological cancers. In addition, we discuss technical and methodological considerations towards their clinical implementation.


Subject(s)
Biomarkers/analysis , Exosomes/metabolism , Extracellular Vesicles/metabolism , Urologic Neoplasms/diagnosis , Humans , Prognosis , Urologic Neoplasms/metabolism
16.
J Extracell Vesicles ; 6(1): 1379835, 2017.
Article in English | MEDLINE | ID: mdl-29184624

ABSTRACT

The EV-TRACK knowledgebase is developed to cope with the need for transparency and rigour to increase reproducibility and facilitate standardization of extracellular vesicle (EV) research. The knowledgebase includes a checklist for authors and editors intended to improve the transparency of methodological aspects of EV experiments, allows queries and meta-analysis of EV experiments and keeps track of the current state of the art. Widespread implementation by the EV research community is key to its success.

17.
Cell Adh Migr ; 11(2): 196-204, 2017 03 04.
Article in English | MEDLINE | ID: mdl-28146372

ABSTRACT

Breast cancer cells closely interact with different cell types of the surrounding adipose tissue to favor invasive growth and metastasis. Extracellular vesicles (EVs) are nanometer-sized vesicles secreted by different cell types that shuttle proteins and nucleic acids to establish cell-cell communication. To study the role of EVs released by cancer-associated adipose tissue in breast cancer progression and metastasis a standardized EV isolation protocol that obtains pure EVs and maintains their functional characteristics is required. We implemented differential ultracentrifugation as a pre-enrichment step followed by OptiPrep density gradient centrifugation (dUC-ODG) to isolate EVs from the conditioned medium of cancer-associated adipose tissue. A combination of immune-electron microscopy, nanoparticle tracking analysis (NTA) and Western blot analysis identified EVs that are enriched in flotillin-1, CD9 and CD63, and sized between 20 and 200 nm with a density of 1.076-1.125 g/ml. The lack of protein aggregates and cell organelle proteins confirmed the purity of the EV preparations. Next, we evaluated whether dUC-ODG isolated EVs are functionally active. ZR75.1 breast cancer cells treated with cancer-associated adipose tissue-secreted EVs from breast cancer patients showed an increased phosphorylation of CREB. MCF-7 breast cancer cells treated with adipose tissue-derived EVs exhibited a stronger propensity to form cellular aggregates. In conclusion, dUC-ODG purifies EVs from conditioned medium of cancer-associated adipose tissue, and these EVs are morphologically intact and biologically active.


Subject(s)
Adipose Tissue/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Extracellular Vesicles/metabolism , Proteome/metabolism , Extracellular Vesicles/ultrastructure , Female , Humans , MCF-7 Cells , Ultracentrifugation
18.
Sci Rep ; 7(1): 2704, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28577337

ABSTRACT

Identification and validation of extracellular vesicle (EV)-associated biomarkers requires robust isolation and characterization protocols. We assessed the impact of some commonly implemented pre-analytical, analytical and post-analytical variables in EV research. Centrifugal filters with different membrane types and pore sizes are used to reduce large volume biofluids prior to EV isolation or to concentrate EVs. We compared five commonly reported filters for their efficiency when using plasma, urine and EV-spiked PBS. Regenerated cellulose membranes with pore size of 10 kDa recovered EVs the most efficient. Less than 40% recovery was achieved with other filters. Next, we analyzed the effect of the type of protein assays to measure EV protein in colorimetric and fluorometric kits. The fluorometric assay Qubit measured low concentration EV and BSA samples the most accurately with the lowest variation among technical and biological replicates. Lastly, we quantified Optiprep remnants in EV samples from density gradient ultracentrifugation and demonstrate that size-exclusion chromatography efficiently removes Optiprep from EVs. In conclusion, choice of centrifugal filters and protein assays confound EV analysis and should be carefully considered to increase efficiency towards biomarker discovery. SEC-based removal of Optiprep remnants from EVs can be considered for downstream applications.


Subject(s)
Extracellular Vesicles/metabolism , Proteins/analysis , Proteins/metabolism , Ultrafiltration , Body Fluids/metabolism , Chromatography, Gel , Culture Media, Conditioned , Extracellular Vesicles/ultrastructure , Humans , MCF-7 Cells , Nanoparticles/ultrastructure , Research
20.
Oncotarget ; 6(24): 20132-44, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-25992771

ABSTRACT

KRAS is a frequently mutated oncogene in lung cancer and among the most refractory to EGFR targeted therapy. Recently, preclinical evidence in pancreatic cancer has demonstrated that mutant KRAS can be regulated by EGFR. However, the distinct correlation between the EGFR/HER family members and mutant KRAS has not been investigated. Here, we show that non-small cell lung cancer cell lines harboring differing isoforms of mutant KRAS, can be broadly divided into EGFR/HER dependent and EGFR/HER independent groups. Combined therapeutic targeting of EGFR, HER2 and HER3 in isoforms regulated by extracellular growth signals promotes in vitro and in vivo efficacy. We also provide evidence that depletion of EGFR via RNA interference specifically abolishes the EGFR/KRAS interaction in the dependent subset. Taken together, these findings suggest that upstream inhibition of the EGFR/HER receptors may be effective in treating a subset of KRAS mutant lung cancers.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Erlotinib Hydrochloride/administration & dosage , Female , Genes, ras , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Targeted Therapy , Mutation , Random Allocation , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL