Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Anal Biochem ; 423(1): 93-101, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22306474

ABSTRACT

There is cumulating evidence that microRNAs (miRNAs) are important regulators of pluripotency and differentiation and, hence, of early lineage segregation in embryo development. To unravel the function of specific miRNAs, it is important not only to analyze miRNA expression in the entire blastocyst but also to determine the site and level of expression in the inner cell mass (ICM) versus trophectoderm (TE). A new strategy has been developed for miRNA expression analysis in ICM and TE using two complementary techniques. By whole mount in situ hybridization (WISH), it was visualized that bta-miR-155 is mainly expressed in the ICM. However, WISH does not provide quantitative data on expression differences between the two cell types. By reverse transcription quantitative polymerase chain reaction (RT-qPCR) on ICM and TE isolates taken from single blastocysts with laser capture microdissection (LCM), it was quantified that bta-miR-155 was 50-fold higher expressed in ICM than in TE. The possibility to quantify both miRNAs and messenger RNAs (mRNAs) in LCM samples offers the opportunity to analyze the expression of both miRNAs and potential targets in one sample. This article shows that a combination of WISH with LCM and subsequent RT-qPCR is a robust strategy to qualitatively and quantitatively analyze differential miRNA expression in discrete cell types of a single blastocyst.


Subject(s)
Blastocyst/metabolism , Gene Expression Profiling/methods , In Situ Hybridization , MicroRNAs/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Animals , Cattle , Gene Expression Regulation , Laser Capture Microdissection , RNA, Messenger/metabolism
2.
BMC Genomics ; 11: 179, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20233419

ABSTRACT

BACKGROUND: The ribosomal protein SA (RPSA), previously named 37-kDa laminin receptor precursor/67-kDa laminin receptor (LRP/LR) is a multifunctional protein that plays a role in a number of pathological processes, such as cancer and prion diseases. In all investigated species, RPSA is a member of a multicopy gene family consisting of one full length functional gene and several pseudogenes. Therefore, for studies on RPSA related pathways/pathologies, it is important to characterize the whole family and to address the possible function of the other RPSA family members. The present work aims at deciphering the RPSA family in sheep. RESULTS: In addition to the full length functional ovine RPSA gene, 11 other members of this multicopy gene family, all processed pseudogenes, were identified. Comparison between the RPSA transcript and these pseudogenes shows a large variety in sequence identities ranging from 99% to 74%. Only one of the 11 pseudogenes, i.e. RPSAP7, shares the same open reading frame (ORF) of 295 amino acids with the RPSA gene, differing in only one amino acid. All members of the RPSA family were annotated by comparative mapping and fluorescence in situ hybridization (FISH) localization. Transcription was investigated in the cerebrum, cerebellum, spleen, muscle, lymph node, duodenum and blood, and transcripts were detected for 6 of the 11 pseudogenes in some of these tissues. CONCLUSIONS: In the present work we have characterized the ovine RPSA family. Our results have revealed the existence of 11 ovine RPSA pseudogenes and provide new data on their structure and sequence. Such information will facilitate molecular studies of the functional RPSA gene taking into account the existence of these pseudogenes in the design of experiments. It remains to be investigated if the transcribed members are functional as regulatory non-coding RNA or as functional proteins.


Subject(s)
Pseudogenes , Receptors, Laminin/genetics , Ribosomal Proteins/genetics , Sheep, Domestic/genetics , Animals , Base Sequence , Chromosomes, Artificial, Bacterial , Contig Mapping , Gene Expression Profiling , Gene Library , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Multigene Family , Open Reading Frames , Sequence Alignment , Sequence Analysis, DNA , Sequence Tagged Sites
3.
Reprod Fertil Dev ; 22(2): 395-404, 2010.
Article in English | MEDLINE | ID: mdl-20047725

ABSTRACT

The expression of the cytoskeleton protein Keratin 18 (KRT18) starts at the onset of bovine blastocyst formation. KRT18 is solely expressed in the trophectoderm and can therefore be used as a marker for trophectodermal differentiation. In the present study, the expression of KRT18 was suppressed by RNA interference to probe its functional importance in bovine blastocyst formation. Microinjection of KRT18 double-stranded RNA into the cytoplasm of zygotes resulted in reduced KRT18 mRNA (76% reduction) and protein expression at the blastocyst stage and a lower developmental competence (41% reduction in the percentage of blastocyst formation) compared with non-injected and phosphate-buffered saline (PBS)-injected controls. KRT18 downregulation was associated with reduced mRNA expression of KRT8, the binding partner of KRT18, but had no effect on the expression of KRT19, CDH1 and DSP, other genes involved in intermediate filament and cytoskeleton formation. The results of the present study demonstrated that KRT18 knockdown in preimplantation embryos results in reduced blastocyst formation, but no further morphological aberrations were observed with regard to the biological function of KRT18. These observations could be due to the function of KRT18 being replaced by that of another gene, the surviving blastocysts expressing the minimum level of KRT18 required for normal blastocyst development or the possibility that further aberrations may occur later in development.


Subject(s)
Blastocyst/metabolism , Keratin-18/antagonists & inhibitors , Keratin-18/genetics , Animals , Base Sequence , Cadherins , Cattle , DNA Primers/genetics , Desmoplakins/genetics , Embryo Culture Techniques , Embryonic Development/genetics , Embryonic Development/physiology , Female , Gene Expression Regulation, Developmental , Keratin-18/metabolism , Keratin-19/genetics , Keratin-8/genetics , Male , Microscopy, Confocal , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
BMC Dev Biol ; 9: 1, 2009 Jan 06.
Article in English | MEDLINE | ID: mdl-19126199

ABSTRACT

BACKGROUND: Fibronectin 1 (FN1), a glycoprotein component of the extracellular matrix, exerts different functions during reproductive processes such as fertilisation, gastrulation and implantation. FN1 expression has been described to increase significantly from the morula towards the early blastocyst stage, suggesting that FN1 may also be involved in early blastocyst formation. By alternative splicing at 3 defined regions, different FN1 isoforms are generated, each with a unique biological function. The analysis of the alternative FN1 splicing on the one hand and the search for candidate FN1 receptors on the other hand during early bovine embryo development may reveal more about its function during bovine preimplantation embryo development. RESULTS: RT-qPCR quantification of the FN1 splice isoforms in oocytes, embryos, cumulus cells and adult tissue samples revealed a large variation in overall FN1 expression and in splice variant expression. Moreover, two new FN1 transcript variants were identified, the first one expressed in bovine preimplantation embryos and the second one expressed in cumulus cells. In the search for candidate receptors for the new embryo specific FN1 isoform, RNA expression analysis identified 5 alpha integrin subunits (ITGA2B, ITGA3, ITGA5, ITGA8, ITGAV) and 2 beta integrin subunits (ITGB1 and ITGB3) with a similar or overlapping RNA expression pattern as compared to FN1. But double immunofluorescent stainings could not confirm complete co-localisation between FN1 and one out of 3 selected integrins alpha subunits (ITGA3, ITGA5, ITGAV). CONCLUSION: The existence of a new FN1 transcript variant, specifically expressed in morulae and blastocysts strengthens the idea that FN1 is involved in the process of compaction and blastocyst formation. Analysis of the integrin expression could not identify the binding partner for the embryo specific FN1 transcript variant making further steps necessary for the identification of the FN1 receptor and the downstream effects of FN1-receptor binding.


Subject(s)
Blastocyst/metabolism , Fibronectins/analysis , Fibronectins/physiology , Protein Isoforms/analysis , Protein Isoforms/physiology , Receptors, Fibronectin/analysis , Receptors, Fibronectin/physiology , Alternative Splicing , Amino Acid Sequence , Animals , Cattle , Cell Adhesion/genetics , Embryo Culture Techniques , Embryonic Development/genetics , Female , Gene Expression , Male , Molecular Sequence Data , Pregnancy , Protein Structure, Tertiary/physiology , Reverse Transcriptase Polymerase Chain Reaction
5.
BMC Genet ; 10: 64, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19807916

ABSTRACT

BACKGROUND: Because prostaglandins are involved in many (patho)physiological processes, SLCO2A1 was already characterized in several species in an attempt to unravel specific processes/deficiencies. Here, we describe the molecular cloning and characterization of the porcine ortholog in order to evaluate its possible involvement in F4 enterotoxigenic E. coli mediated neonatal diarrhoea, based on a positional candidate gene approach study. RESULTS: Porcine SLCO2A1 is organized in 14 exons, containing an open reading frame of 1935 bp, encoding a 12-transmembrane organic anion cell surface transporter of 644 aa. The -388 to -5 upstream region comprises a (CpG)48 island containing a number of conserved promoter elements, including a TATA box. A potential alternative promoter region was found in the conserved -973 to -700 upstream region. No consensus polyadenylation signal was discovered in the 3' UTR. Repeat sequences were found in 15% of all the non coding sequences.As expected for a multifunctional protein, a wide tissue distribution was observed. mRNA expression was found in the adrenal gland, bladder, caecum, colon (centripetal coil/centrifugal coil), diaphragm, duodenum, gallbladder, heart, ileum, jejunum, kidney, liver, longissimus dorsi muscle, lung, lymph node, mesenterium, rectum, spleen, stomach, tongue and ureter, but not in the aorta, oesophagus and pancreas.The promoter region and the exons (including the splice sites) of SLCO2A1 were resequenced in 5 F4ab/ac receptor positive and 5 F4ab/ac receptor negative pigs. Two silent and 2 missense (both S --> L at position 360 and 633) mutations were found, but none was associated with the F4ab/ac receptor phenotype. In addition, no phenotype associated differential mRNA expression or alternative/abberant splicing/polyadenylation was found in the jejunum. CONCLUSION: The molecular cloning and characterization of porcine SLCO2A1 not only contributes to the already existing knowledge about the transporter in general, but enables studies on porcine prostaglandin related processes/deficiencies as patient and/or model. Here we examined its possible involvement as receptor in F4 enterotoxigenic E. coli mediated neonatal diarrhoea. Because no phenotype associated differences could be found in the gene sequence nor in its jejunal transcription profile of F4ab/ac receptor positive/negative pigs, SLCO2A1 can most likely be excluded as receptor for F4 bacteria.


Subject(s)
Diarrhea/genetics , Organic Anion Transporters/genetics , Swine Diseases/genetics , Swine/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Diarrhea/microbiology , Enterotoxigenic Escherichia coli , Escherichia coli Infections/genetics , Exons , Gene Expression Profiling , Jejunum/metabolism , Molecular Sequence Data , Phenotype , Promoter Regions, Genetic , Protein Structure, Secondary , Sequence Alignment , Sequence Analysis, DNA
6.
BMC Dev Biol ; 7: 64, 2007 Jun 08.
Article in English | MEDLINE | ID: mdl-17559642

ABSTRACT

BACKGROUND: Normal preimplantation embryo development encompasses a series of events including first cleavage division, activation of the embryonic genome, compaction and blastocyst formation. First lineage differentiation starts at the blastocyst stage with the formation of the trophectoderm and the inner cell mass. The main objective of this study was the detection, identification and expression analysis of genes associated with blastocyst formation in order to help us better understand this process. This information could lead to improvements of in vitro embryo production procedures. RESULTS: A subtractive cDNA library was constructed enriched for transcripts preferentially expressed at the blastocyst stage compared to the 2-cell and 8-cell stage. Sequence information was obtained for 65 randomly selected clones. The RNA expression levels of 12 candidate genes were determined throughout 3 stages of preimplantation embryo development (2-cell, 8-cell and blastocyst) and compared with the RNA expression levels of in vivo "golden standard" embryos using real-time PCR. The RNA expression profiles of 9 (75%) transcripts (KRT18, FN1, MYL6, ATP1B3, FTH1, HINT1, SLC25A5, ATP6V0B, RPL10) were in agreement with the subtractive cDNA cloning approach, whereas for the remaining 3 (25%) (ACTN1, COPE, EEF1A1) the RNA expression level was equal or even higher at the earlier developmental stages compared to the blastocyst stage. Moreover, significant differences in RNA expression levels were observed between in vitro and in vivo produced embryos. By immunofluorescent labelling, the protein expression of KRT18, FN1 and MYL6 was determined throughout bovine preimplantation embryo development and showed the same pattern as the RNA expression analyses. CONCLUSION: By subtractive cDNA cloning, candidate genes involved in blastocyst formation were identified. For several candidate genes, important differences in gene expression were observed between in vivo and in vitro produced embryos, reflecting the influence of the in vitro culture system on the embryonic gene expression. Both RNA and protein expression analysis demonstrated that KRT18, FN1 and MYL6 are differentially expressed during preimplantation embryo development and those genes can be considered as markers for bovine blastocyst formation.


Subject(s)
Blastocyst/physiology , Embryo Culture Techniques , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Animals , Cattle , DNA, Complementary , Expressed Sequence Tags , Female , Gene Expression Profiling , Insemination, Artificial , Male , Oligonucleotide Array Sequence Analysis , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction
7.
BMC Genomics ; 8: 138, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17537256

ABSTRACT

BACKGROUND: TSEs are a group of fatal neurodegenerative diseases occurring in man and animals. They are caused by prions, alternatively folded forms of the endogenous prion protein, encoded by PRNP. Since differences in the sequence of PRNP can not explain all variation in TSE susceptibility, there is growing interest in other genes that might have an influence on this susceptibility. One of these genes is SPRN, a gene coding for a protein showing remarkable similarities with the prion protein. Until now, SPRN has not been described in sheep, a highly relevant species in prion matters. RESULTS: In order to characterize the genomic region containing SPRN in sheep, a BAC mini-contig was built, covering approximately 200,000 bp and containing the genes ECHS1, PAOX, MTG1, SPRN, LOC619207, CYP2E1 and at least partially SYCE1. FISH mapping of the two most exterior BAC clones of the contig positioned this contig on Oari22q24. A fragment of 4,544 bp was also sequenced, covering the entire SPRN gene and 1206 bp of the promoter region. In addition, the transcription profile of SPRN in 21 tissues was determined by RT-PCR, showing high levels in cerebrum and cerebellum, and low levels in testis, lymph node, jejunum, ileum, colon and rectum. CONCLUSION: Annotation of a mini-contig including SPRN suggests conserved linkage between Oari22q24 and Hsap10q26. The ovine SPRN sequence, described for the first time, shows a high level of homology with the bovine, and to a lesser extent with the human SPRN sequence. In addition, transcription profiling in sheep reveals main expression of SPRN in brain tissue, as in rat, cow, man and mouse.


Subject(s)
Nerve Tissue Proteins/genetics , Prion Diseases/genetics , Sheep/genetics , Animals , Base Sequence , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , DNA Primers , GPI-Linked Proteins , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Species Specificity
8.
BMC Biotechnol ; 6: 41, 2006 Oct 09.
Article in English | MEDLINE | ID: mdl-17026777

ABSTRACT

BACKGROUND: An essential part of using real-time RT-PCR is that expression results have to be normalized before any conclusions can be drawn. This can be done by using one or multiple, validated reference genes, depending on the desired accuracy of the results. In the pig however, very little information is available on the expression stability of reference genes. The aim of this study was therefore to develop a new set of reference genes which can be used for normalization of mRNA expression data of genes expressed in porcine backfat and longissimus dorsi muscle, both representing an economically important part of a pig's carcass. Because of its multiple functions in fat metabolism and muscle fibre type composition, peroxisome proliferative activated receptor gamma coactivator 1alpha (PPARGC1A) is a very interesting candidate gene for meat quality, and was an ideal gene to evaluate our developed set of reference genes for normalization of mRNA expression data of both tissue types. RESULTS: The mRNA expression stability of 10 reference genes was determined. The expression of RPL13A and SDHA appeared to be highly unstable. After normalization to the geometric mean of the three most stably expressed reference genes (ACTB, TBP and TOP2B), the results not only showed that the mRNA expression of PPARGC1A was significantly higher in each of the longissimus dorsi muscle samples than in backfat (P < 0.05), but also that the expression was significantly higher in the most cranial of the three muscle samples (P < 0.05). CONCLUSION: This study provides a new set of reference genes (ACTB, TBP and TOP2B) suitable for normalization of real-time RT-PCR data of backfat and longissimus dorsi muscle in the pig. The obtained PPARGC1A expression results, after application of this set of reference genes, are a first step in unravelling the PPARGC1A expression pattern in the pig and provide a basis for possible selection towards improved meat quality while maintaining a lean carcass.


Subject(s)
Adipose Tissue/metabolism , Gene Expression , Muscle, Skeletal/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Swine/genetics , Transcription Factors/genetics , Animals , Meat/standards , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
BMC Dev Biol ; 5: 27, 2005 Dec 03.
Article in English | MEDLINE | ID: mdl-16324220

ABSTRACT

BACKGROUND: Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the successful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used. RESULTS: In this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA) were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst) in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages. CONCLUSION: Using the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.


Subject(s)
Blastocyst , Gene Expression Profiling/methods , Polymerase Chain Reaction/methods , Animals , Cattle , Gene Expression Regulation, Developmental , Genetic Markers , Molecular Sequence Data , Transcription, Genetic
10.
BMC Genomics ; 6: 133, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16176575

ABSTRACT

BACKGROUND: The gene(s) encoding the ETEC F4ab/ac receptors, involved in neonatal diarrhoea in pigs (a disease not yet described in humans), is located close to the TF locus on Sscr13. In order to reveal and characterize possible candidate genes encoding these receptors, a porcine physical map of the TF region is indispensable. RESULTS: A contig of 33 BAC clones, covering approximately 1.35 Mb surrounding the TF locus on Sscr13q31-q32, was built by chromosome walking. A total of 22,552 bp from the BAC contig were sequenced and compared with database sequences to identify genes, ESTs and repeat sequences, and to anchor the contig to the syntenic region of the human genome sequence (Hsap3q21-q22). The contig was further annotated based on this human/porcine comparative map, and was also anchored to the Sanger porcine framework map and the integrated map of Sscr13 by RH mapping. CONCLUSION: The annotated contig, containing 10 genes and 2 ESTs, showed a complete conservation of linkage (gene order and orientation) with the human genome sequence, based on 46 anchor points. This underlines the importance of the human/porcine comparative map for the identification of porcine genes associated with genetic defects and economically important traits, and for assembly of the porcine genome sequence.


Subject(s)
Chromosomes, Artificial, Bacterial , Chromosomes, Human, Pair 3 , Contig Mapping/methods , Animals , Base Sequence , Chromosome Mapping , Chromosome Walking , DNA Primers/chemistry , Expressed Sequence Tags , Genetic Linkage , Genome, Human , Humans , Nucleic Acid Hybridization , Physical Chromosome Mapping , Radiation Hybrid Mapping , Species Specificity , Swine
11.
BMC Infect Dis ; 5: 13, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15769289

ABSTRACT

BACKGROUND: Scrapie and BSE belong to a group of fatal, transmissible, neurodegenerative diseases called TSE. In order to minimize the risk of natural scrapie and presumed natural BSE in sheep, breeding programmes towards TSE resistance are conducted in many countries based on resistance rendering PRNP polymorphisms at codons 136 (A/V), 154 (R/H) and 171 (R/H/Q). Therefore, a reliable, fast and cost-effective method for routine PRNP genotyping in sheep, applicable in standard equipped molecular genetic laboratories, will be a vital instrument to fulfill the need of genotyping hundreds or thousands of sheep. METHODS: A dual fluorescent multiprobe assay consisting of 2 closed tube PCR reactions containing respectively 4 and 3 dual-labelled fluorescent ASO probes for the detection in real-time of the 7 allelic variants of sheep PRNP mentioned above. RESULTS: The assay is successfully performed using unpurified DNA as a template for PCR, without any post-PCR manipulations and with semi-automatic determination of the PRNP genotypes. The performance of the assay was confirmed via PCR-RFLP and sequencing in a cross-validation study with 50 sheep. CONCLUSIONS: We report the development and validation of a robust, reliable and reproducible method for PRNP genotyping of a few to many sheep samples in a fast, simple and cost-effective way, applicable in standard equipped molecular genetic laboratories. The described primer/probe design strategy can also be applied for the detection of other polymorphisms or disease causing mutations.


Subject(s)
Fluorescent Dyes/analysis , Prion Diseases/veterinary , Prions/analysis , Prions/genetics , Sheep Diseases/diagnosis , Alleles , Animals , Genetic Variation , Genotype , Prion Diseases/diagnosis
12.
Stem Cells Dev ; 22(13): 1907-20, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23398486

ABSTRACT

Mammalian blastocyst formation is characterized by two lineage segregations resulting in the formation of the trophectoderm, the hypoblast, and the epiblast cell lineages. Cell fate determination during these early lineage segregations is associated with changes in the expression of specific transcription factors. In addition to the transcription factor-based control, it has become clear that also microRNAs (miRNAs) play an important role in the post-transcriptional regulation of pluripotency and differentiation. To elucidate the role of miRNAs in early lineage segregation, we compared the miRNA expression in early bovine blastocysts with the more advanced stage of hatched blastocysts. Reverse transcription-quantitative PCR-based miRNA expression profiling revealed eight upregulated miRNAs (miR-127, miR-130a, miR-155, miR-196a, miR-203, miR-28, miR-29c, and miR-376a) and four downregulated miRNAs (miR-135a, miR-218, miR-335, and miR-449b) in hatched blastocysts. Through an integrative analysis of matching miRNA and mRNA expression data, candidate miRNA-mRNA interaction pairs were prioritized for validation. Using an in vitro luciferase reporter assay, we confirmed a direct interaction between miR-218 and CDH2, miR-218 and NANOG, and miR-449b and NOTCH1. By interfering with the FGF signaling pathway, we found functional evidence that miR-218, mainly expressed in the inner cell mass, regulates the NANOG expression in the bovine blastocyst in response to FGF signaling. The results of this study expand our knowledge about the miRNA signature of the bovine blastocyst and of the interactions between miRNAs and cell fate regulating transcription factors.


Subject(s)
Blastocyst/cytology , Embryonic Development/genetics , Gene Regulatory Networks , MicroRNAs/metabolism , Animals , Blastocyst/metabolism , Cattle , Cell Differentiation/genetics , Cell Lineage/genetics , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Transcription Factors/genetics
13.
Virus Genes ; 38(1): 189-92, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18941882

ABSTRACT

Prion protein genetics plays a central role in transmissible spongiform encephalopathies, a disease occurring in human and animals. Here we report a 27-kb genomic sequence containing the goat PRNP gene. It shows, both in structure and content, a remarkable similarity with its sheep ortholog and can serve as a basis for future (comparative) studies with reference to the regulation of PRNP gene expression and the search for genetic tools to prevent/control/eradicate (goat) TSE.


Subject(s)
Prions/genetics , Animals , Base Sequence , Goats , Molecular Sequence Data , Sequence Analysis, DNA
14.
Mol Cell Probes ; 23(1): 60-4, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19059475

ABSTRACT

SPRN is an interesting new member of the PRNP family because of its sequence homology with the hydrophobic region of PRNP, its expression in brain tissue and its PrP-like properties in functional experiments on Prnp(0/0) mice. In this study, we investigated by quantitative real-time PCR the relative mRNA expression levels of SPRN and PRNP in sheep cerebrum and cerebellum and the mutual relationship between these expression levels. Analysis of PRNP and SPRN mRNA expression levels in 45 cerebral cortex and 47 cerebellar cortex samples showed that the PRNP expression level was significantly higher (p<0.05) in cerebellum than in cerebrum, while no significant difference was detected for SPRN between these tissues. The expression level varied clearly more in cerebrum than in cerebellum for both genes tested, and the variation was larger for SPRN than for PRNP in both types of brain tissue. Remarkably, the mRNA expression levels of PRNP and SPRN showed a highly significant positive correlation in both cerebrum (p<0.0001) and cerebellum (p<0.001). This positive correlation might indicate co-regulation between these genes. Further investigation on the causal nature of this correlation may provide new insights into prion pathogenesis.


Subject(s)
Cerebellar Cortex/metabolism , Cerebrum/metabolism , Gene Expression Regulation , Nerve Tissue Proteins/genetics , PrPC Proteins/genetics , Sheep, Domestic/genetics , Animals , Nerve Tissue Proteins/metabolism , PrPC Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
BMC Res Notes ; 1: 138, 2008 Dec 29.
Article in English | MEDLINE | ID: mdl-19114011

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor gamma coactivator 1alpha (PPARGC1A) is a coactivator with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How its many functions are regulated, is however still largely unclear. Therefore a transcription profile of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by screening its cDNA for possible splice variants with exon-spanning primers. FINDINGS: This led to the discovery of 2 new splice variants in the pig, which were subsequently also detected in human tissues. In these variants, exon 8 was either completely or partly (the last 66 bp were conserved) spliced out, potentially coding for a much shorter protein of respectively 337 and 359 amino acids (aa), of which the first 291 aa would be the same compared to the complete protein (796 aa). CONCLUSION: Considering the functional domains of the PPARGC1A protein, it is very likely these splice variants considerably affect the function of the protein and alternative splicing could be one of the mechanisms by which the diverse functions of PPARGC1A are regulated.

SELECTION OF CITATIONS
SEARCH DETAIL