Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Semin Cell Dev Biol ; 88: 107-118, 2019 04.
Article in English | MEDLINE | ID: mdl-29432955

ABSTRACT

Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.


Subject(s)
Defensins/immunology , Fungi/drug effects , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/immunology , Plants/immunology , Cell Wall/chemistry , Cell Wall/drug effects , Conserved Sequence , Defensins/genetics , Defensins/pharmacology , Disease Resistance/genetics , Evolution, Molecular , Fungi/chemistry , Fungi/metabolism , Gene Expression Regulation, Plant/immunology , Host-Pathogen Interactions , Lipids/chemistry , Lipids/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/pharmacology , Plants/genetics , Plants/microbiology , Protein Folding , Protein Structure, Secondary , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism
2.
Article in English | MEDLINE | ID: mdl-31451498

ABSTRACT

Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.


Subject(s)
Antifungal Agents/pharmacology , Defensins/genetics , Genes, Fungal/genetics , Plants/microbiology , Saccharomyces cerevisiae/genetics , Sequence Deletion/genetics , Amino Acid Sequence , Fusarium/genetics , Gene Deletion , Gene Library
3.
J Exp Bot ; 69(3): 633-641, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29309615

ABSTRACT

Cyclotides are ultra-stable, backbone-cyclized plant defence peptides that have attracted considerable interest in the pharmaceutical industry. This is due to their range of native bioactivities as well as their ability to stabilize other bioactive peptides within their framework. However, a hindrance to their widespread application is the lack of scalable, cost-effective production strategies. Plant-based production is an attractive, benign option since all biosynthetic steps are performed in planta. Nonetheless, cyclization in non-cyclotide-producing plants is poor. Here, we show that cyclic peptides can be produced efficiently in Nicotiana benthamiana, one of the leading plant-based protein production platforms, by co-expressing cyclotide precursors with asparaginyl endopeptidases that catalyse peptide backbone cyclization. This approach was successful in a range of other plants (tobacco, bush bean, lettuce, and canola), either transiently or stably expressed, and was applicable to both native and engineered cyclic peptides. We also describe the use of the transgenic system to rapidly identify new asparaginyl endopeptidase cyclases and interrogate their substrate sequence requirements. Our results pave the way for exploiting cyclotides for pest protection in transgenic crops as well as large-scale production of cyclic peptide pharmaceuticals in plants.


Subject(s)
Cysteine Endopeptidases/metabolism , Nicotiana/metabolism , Peptides, Cyclic/metabolism , Plant Proteins/metabolism , Cysteine Endopeptidases/genetics , Gene Expression Profiling , Peptides, Cyclic/genetics , Plant Proteins/genetics , Nicotiana/genetics
4.
Biochim Biophys Acta ; 1858(6): 1099-109, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26896695

ABSTRACT

Plant defensins interact with phospholipids in bilayers as part of their cytotoxic activity. Solanaceous class II defensins with the loop 5 sequence pattern "S-[KR]-[ILVQ]-[ILVQ]-[KR]-[KR]" interact with PI(4,5)P2. Here, the prototypical defensin of this class, NaD1, is used to characterise the biophysical interactions between these defensins and phospholipid bilayers. Binding of NaD1 to bilayers containing PI(4,5)P2 occurs rapidly and the interaction is very strong. Dual polarisation interferometry revealed that NaD1 does not dissociate from bilayers containing PI(4,5)P2. Binding of NaD1 to bilayers with or without PI(4,5)P2 induced disorder in the bilayer. However, permeabilisation assays revealed that NaD1 only permeabilised liposomes with PI(4,5)P2 in the bilayer, suggesting a role for this protein-lipid interaction in the plasma membrane permeabilising activity of this defensin. No defensins in the available databases have the PI(4,5)P2 binding sequence outside the solanaceous class II defensins, leading to the hypothesis that PI(4,5)P2 binding co-evolved with the C-terminal propeptide to protect the host cell against the effects of the tight binding of these defensins to their cognate lipid as they travel along the secretory pathway. This data has allowed us to develop a new model to explain how this class of defensins permeabilises plasma membranes to kill target cells.


Subject(s)
Arabidopsis Proteins/physiology , Membrane Lipids/metabolism , NADH Dehydrogenase/physiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Lipid Bilayers , Molecular Sequence Data , NADH Dehydrogenase/chemistry , Protein Binding , Sequence Homology, Amino Acid
5.
Antimicrob Agents Chemother ; 60(10): 6302-12, 2016 10.
Article in English | MEDLINE | ID: mdl-27503651

ABSTRACT

The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-ß motif which consists of an α helix and a triple-stranded ß-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants.


Subject(s)
Antifungal Agents/pharmacology , Defensins/chemistry , Defensins/pharmacology , Nicotiana/chemistry , Antifungal Agents/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Membrane/drug effects , Defensins/genetics , Defensins/metabolism , Drug Evaluation, Preclinical/methods , Fusarium/drug effects , Humans , Liposomes , Neomycin/pharmacology , Permeability , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Folding , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism
6.
Mol Microbiol ; 92(6): 1188-97, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24750237

ABSTRACT

Antimicrobial peptides (AMPs) are promising agents for control of bacterial and fungal infections. Traditionally, AMPs were thought to act through membrane disruption but recent experiments have revealed a diversity of mechanisms. Here we describe a novel antifungal activity for bovine pancreatic trypsin inhibitor (BPTI). BPTI has several features in common with a subset of antimicrobial proteins in that it is small, cationic and stabilized by disulphide bonds. BPTI inhibits growth of Saccharomyces cerevisiae and the human pathogen Candida albicans. Screening of the yeast heterozygous essential deletion collection identified the magnesium transporter Alr1p as a potential BPTI target. BPTI treatment of wild type cells resulted in a lowering of cellular Mg(2+) levels. Populations treated with BPTI had fewer cells in S-phase of the cell cycle and a corresponding increase of cells in G(0)/G(1) and G(2) phases. The same patterns of cell cycle arrest obtained with BPTI were also obtained with the magnesium channel inhibitor hexamine(III)cobalt chloride. Analysis of the growth inhibition of C. albicans revealed that BPTI is inhibiting growth via the same mechanism in the two yeast species. Inhibition of magnesium uptake by BPTI represents a novel mechanism of action for AMPs.


Subject(s)
Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Aprotinin/pharmacology , Candida albicans/drug effects , Magnesium/metabolism , Saccharomyces cerevisiae/drug effects , Candida albicans/growth & development , Candida albicans/physiology , Cell Cycle/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology
7.
Cell Mol Life Sci ; 71(14): 2651-66, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24526056

ABSTRACT

Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.


Subject(s)
Antifungal Agents/pharmacology , Drug Tolerance , Fungi/drug effects , Fungicides, Industrial/pharmacology , Signal Transduction , Stress, Physiological , Cell Wall/drug effects , Fungi/metabolism , Fungi/physiology , Osmotic Pressure/drug effects , Oxidative Stress/drug effects
8.
Biochim Biophys Acta ; 1834(8): 1615-23, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23665069

ABSTRACT

The amyloid fibril-forming ability of two closely related antifungal and antimicrobial peptides derived from plant defensin proteins has been investigated. As assessed by sequence analysis, thioflavin T binding, transmission electron microscopy, atomic force microscopy and X-ray fiber diffraction, a 19 amino acid fragment from the C-terminal region of Raphanus sativus antifungal protein, known as RsAFP-19, is highly amyloidogenic. Further, its fibrillar morphology can be altered by externally controlled conditions. Freezing and thawing led to amyloid fibril formation which was accompanied by loss of RsAFP-19 antifungal activity. A second, closely related antifungal peptide displayed no fibril-forming capacity. It is concluded that while fibril formation is not associated with the antifungal properties of these peptides, the peptide RsAFP-19 is of potential use as a controllable, highly amyloidogenic small peptide for investigating the structure of amyloid fibrils and their mechanism of formation.


Subject(s)
Amyloid/chemistry , Antifungal Agents/pharmacology , Fusarium/drug effects , Peptide Fragments/pharmacology , Raphanus/chemistry , Seeds/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Benzothiazoles , Circular Dichroism , Defensins/metabolism , Fusarium/growth & development , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Protein Structure, Secondary , Raphanus/metabolism , Seeds/metabolism , Thiazoles/metabolism , Nicotiana/chemistry , X-Ray Diffraction
9.
Antimicrob Agents Chemother ; 58(5): 2688-98, 2014 May.
Article in English | MEDLINE | ID: mdl-24566173

ABSTRACT

Cationic antifungal peptides (AFPs) act through a variety of mechanisms but share the common feature of interacting with the fungal cell surface. NaD1, a defensin from Nicotiana alata, has potent antifungal activity against a variety of fungi of both hyphal and yeast morphologies. The mechanism of action of NaD1 occurs via three steps: binding to the fungal cell surface, permeabilization of the plasma membrane, and internalization and interaction with intracellular targets to induce fungal cell death. The targets at each of these three stages have yet to be defined. In this study, the screening of a Saccharomyces cerevisiae deletion collection led to the identification of Agp2p as a regulator of the potency of NaD1. Agp2p is a plasma membrane protein that regulates the transport of polyamines and other molecules, many of which carry a positive charge. Cells lacking the agp2 gene were more resistant to NaD1, and this resistance was accompanied by a decreased uptake of defensin. Agp2p senses and regulates the uptake of the polyamine spermidine, and competitive inhibition of the antifungal activity of NaD1 by spermidine was observed in both S. cerevisiae and the plant pathogen Fusarium oxysporum. The resistance of agp2Δ cells to other cationic antifungal peptides and decreased binding of the cationic protein cytochrome c to agp2Δ cells compared to that of wild-type cells have led to a proposed mechanism of resistance whereby the deletion of agp2 leads to an increase in positively charged molecules at the cell surface that repels cationic antifungal peptides.


Subject(s)
Antifungal Agents/metabolism , Cell Membrane/metabolism , NADH Dehydrogenase/metabolism , Peptides/metabolism , Plant Proteins/metabolism , Polyamines/metabolism , Antifungal Agents/pharmacology , Flow Cytometry , Fusarium/drug effects , Fusarium/metabolism , Peptides/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
10.
Cell Mol Life Sci ; 70(19): 3545-70, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23381653

ABSTRACT

Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.


Subject(s)
Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biological Factors/pharmacology , Fungi/drug effects , Animals , Humans
11.
J Fungi (Basel) ; 10(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38248963

ABSTRACT

Plant defensins are a large family of small cationic proteins with diverse functions and mechanisms of action, most of which assert antifungal activity against a broad spectrum of fungi. The partial mechanism of action has been resolved for a small number of members of plant defensins, and studies have revealed that many act by more than one mechanism. The plant defensin Ppdef1 has a unique sequence and long loop 5 with fungicidal activity against a range of human fungal pathogens, but little is known about its mechanism of action. We screened the S. cerevisiae non-essential gene deletion library and identified the involvement of the mitochondria in the mechanism of action of Ppdef1. Further analysis revealed that the hyperpolarisation of the mitochondrial membrane potential (MMP) activates ROS production, vacuolar fusion and cell death and is an important step in the mechanism of action of Ppdef1, and it is likely that a similar mechanism acts in Trichophyton rubrum.

12.
J Biol Chem ; 287(24): 19961-72, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22511788

ABSTRACT

The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys(4) as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys(4) that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys(4) mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens.


Subject(s)
Anti-Infective Agents/chemistry , Defensins/chemistry , Fusarium , Nicotiana/chemistry , Plant Proteins/chemistry , Protein Multimerization , Anti-Infective Agents/metabolism , Crystallography, X-Ray , Defensins/metabolism , Mutagenesis, Site-Directed , Plant Diseases/microbiology , Plant Proteins/metabolism , Protein Structure, Quaternary , Nicotiana/metabolism , Nicotiana/microbiology
13.
Antimicrob Agents Chemother ; 57(8): 3667-75, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23689717

ABSTRACT

In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Defensins/pharmacology , Nicotiana/chemistry , Antifungal Agents/chemistry , Boron Compounds , Defensins/chemistry , Defensins/isolation & purification , Flowers/chemistry , Fluorescent Dyes , Glycerol , Microbial Sensitivity Tests , Nitric Oxide/metabolism , Oxidative Stress , Phosphorylation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects
14.
Phytochemistry ; 209: 113618, 2023 May.
Article in English | MEDLINE | ID: mdl-36828099

ABSTRACT

The membrane interaction characteristics of five antifungal plant defensin peptides: NaD1, and the related HXP4 and L5, as well as NaD2 and the related ZmD32 were studied. These peptides were chosen to cover a broad range of cationic charges with little structural variations, allowing for assessment of the role of charge in their membrane interactions. Membrane permeabilizing activity against C. albicans was confirmed and quantified for benchmarking purposes. Viscoelastic characteristics of the membrane interactions were studied in typical neutral and charged model membranes using quartz crystal microbalance with dissipation (QCM-D. Frequency-dissipation fingerprinting analysis of the QCM-D results revealed that all of the peptides were able to bind to all studied model membranes albeit with slightly different viscoelastic character for each membrane type. However, characteristic disruption patterns were not observed suggesting that the membrane disrupting activity of these defensins is mostly specific to fungal membranes, and that increasing the peptide charge does not enhance their action. The results also show that the presence of specific sterols has a profound effect on the ability of the peptides to disrupt the membrane.


Subject(s)
Defensins , Peptides , Defensins/chemistry
15.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998916

ABSTRACT

Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.

16.
J Biol Chem ; 285(48): 37513-20, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-20861017

ABSTRACT

The antifungal activity of the plant defensin NaD1 involves specific interaction with the fungal cell wall, followed by permeabilization of the plasma membrane and entry of NaD1 into the cytoplasm. Prior to this study, the role of membrane permeabilization in the activity of NaD1, as well as the relevance of cell wall binding, had not been investigated. To address this, the permeabilization of Fusarium oxysporum f. sp. vasinfectum hyphae by NaD1 was investigated and compared with that by other antimicrobial peptides, including the cecropin-melittin hybrid peptide CP-29, the bovine peptide BMAP-28, and the human peptide LL-37, which are believed to act largely through membrane disruption. NaD1 appeared to permeabilize cells via a novel mechanism that required the presence of the fungal cell wall. NaD1 and Bac2A, a linear variant of the bovine peptide bactenecin, were able to enter the cytoplasm of treated hyphae, indicating that cell death is accelerated by interaction with intracellular targets.


Subject(s)
Cell Membrane Permeability , Cell Wall/metabolism , Defensins/metabolism , Fusarium/metabolism , Hyphae/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Cell Membrane Permeability/drug effects , Cell Wall/chemistry , Cell Wall/drug effects , Defensins/chemistry , Defensins/pharmacology , Fusarium/chemistry , Fusarium/drug effects , Host-Pathogen Interactions , Hyphae/chemistry , Hyphae/drug effects , Kinetics , Microbial Viability/drug effects , Plant Proteins/chemistry , Plant Proteins/pharmacology , Nicotiana/chemistry , Nicotiana/metabolism
17.
Front Plant Sci ; 11: 1227, 2020.
Article in English | MEDLINE | ID: mdl-32922418

ABSTRACT

Despite the use of chemical fungicides, fungal diseases have a major impact on the yield and quality of plant produce globally and hence there is a need for new approaches for disease control. Several groups have examined the potential use of antifungal plant defensins for plant protection and have produced transgenic plants expressing plant defensins with enhanced resistance to fungal disease. However, before they can be developed commercially, transgenic plants must pass a series of strict regulations to ensure that they are safe for human and animal consumption as well as the environment. One of the requirements is rapid digestion of the transgene protein in the gastrointestinal tract to minimize the risk of any potential allergic response. Here, we examine the digestibility of two plant defensins, NaD1 from Nicotiana alata and SBI6 from soybean, which have potent antifungal activity against major cereal pathogens. The native defensins were not digestible in simulated gastrointestinal fluid assays. Several modifications to the sequences enhanced the digestibility of the two small proteins without severely impacting their antifungal activity. However, these modified proteins did not accumulate as well as the native proteins when transiently expressed in planta, suggesting that the protease-resistant structure of plant defensins facilitates their stability in planta.

18.
Cell Surf ; 5: 100026, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743142

ABSTRACT

The fungal cell wall is the first point of contact between fungal pathogens and host organisms. It serves as a protective barrier against biotic and abiotic stresses and as a signal to the host that a fungal pathogen is present. The fungal cell wall is made predominantly of carbohydrates and glycoproteins, many of which serve as binding receptors for host defence molecules or activate host immune responses through interactions with membrane-bound receptors. Plant defensins are a large family of cationic antifungal peptides that protect plants against fungal disease. Binding of the plant defensin NaD1 to the fungal cell wall has been described but the specific component of the cell wall with which this interaction occurred was unknown. The effect of binding was also unclear, that is whether the plant defensin used fungal cell wall components as a recognition motif for the plant to identify potential pathogens or if the cell wall acted to protect the fungus against the defensin. Here we describe the interaction between the fungal cell wall polysaccharides chitin and ß-glucan with NaD1 and other plant defensins. We discovered that the ß-glucan layer protects the fungus against plant defensins and the loss of activity experienced by many cationic antifungal peptides at elevated salt concentrations is due to sequestration by fungal cell wall polysaccharides. This has limited the development of cationic antifungal peptides for the treatment of systemic fungal diseases in humans as the level of salt in serum is enough to inactivate most cationic peptides.

19.
Sci Rep ; 9(1): 10820, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31346249

ABSTRACT

Asparaginyl endopeptidases (AEPs) are a class of enzymes commonly associated with proteolysis in the maturation of seed storage proteins. However, a subset of AEPs work preferentially as peptide ligases, coupling release of a leaving group to formation of a new peptide bond. These "ligase-type" AEPs require only short recognition motifs to ligate a range of targets, making them useful tools in peptide and protein engineering for cyclisation of peptides or ligation of separate peptides into larger products. Here we report the recombinant expression, ligase activity and cyclisation kinetics of three new AEPs from the cyclotide producing plant Oldenlandia affinis with superior kinetics to the prototypical recombinant AEP ligase OaAEP1b. These AEPs work preferentially as ligases at both acidic and neutral pH and we term them "canonical AEP ligases" to distinguish them from other AEPs where activity preferences shift according to pH. We show that these ligases intrinsically favour ligation over hydrolysis, are highly efficient at cyclising two unrelated peptides and are compatible with organic co-solvents. Finally, we demonstrate the broad scope of recombinant AEPs in biotechnology by the backbone cyclisation of an intrinsically disordered protein, the 25 kDa malarial vaccine candidate Plasmodium falciparum merozoite surface protein 2 (MSP2).


Subject(s)
Cysteine Endopeptidases/metabolism , Intrinsically Disordered Proteins/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Antigens, Protozoan/metabolism , Cyclization , Models, Molecular , Protein Engineering , Protozoan Proteins/metabolism , Recombinant Proteins/metabolism
20.
Front Microbiol ; 10: 795, 2019.
Article in English | MEDLINE | ID: mdl-31031739

ABSTRACT

Pathogenic microbes are developing resistance to established antibiotics, making the development of novel antimicrobial molecules paramount. One major resource for discovery of antimicrobials is the arsenal of innate immunity molecules that are part of the first line of pathogen defense in many organisms. Gene encoded cationic antimicrobial peptides are a major constituent of innate immune arsenals. Many of these peptides exhibit potent antimicrobial activity in vitro. However, a major hurdle that has impeded their development for use in the clinic is the loss of activity at physiological salt concentrations, attributed to weakening of the electrostatic interactions between the cationic peptide and anionic surfaces of the microbial cells in the presence of salt. Using plant defensins we have investigated the relationship between the charge of an antimicrobial peptide and its activity in media with elevated salt concentrations. Plant defensins are a large class of antifungal peptides that have remarkable stability at extremes of pH and temperature as well as resistance to protease digestion. A search of a database of over 1200 plant defensins identified ZmD32, a defensin from Zea mays, with a predicted charge of +10.1 at pH 7, the highest of any defensin in the database. Recombinant ZmD32 retained activity against a range of fungal species in media containing elevated concentrations of salt. In addition, ZmD32 was active against Candida albicans biofilms as well as both Gram negative and Gram-positive bacteria. This broad spectrum antimicrobial activity, combined with a low toxicity on human cells make ZmD32 an attractive lead for development of future antimicrobial molecules.

SELECTION OF CITATIONS
SEARCH DETAIL