Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Hum Genet ; 98(4): 735-43, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27058446

ABSTRACT

Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species.


Subject(s)
Corpus Striatum/pathology , Hyperkinesis/genetics , Mutation , Phosphoric Diester Hydrolases/genetics , Alleles , Amino Acid Sequence , Animals , Disease Models, Animal , Gene Expression Regulation , Genetic Variation , HEK293 Cells , Humans , Hyperkinesis/diagnosis , Hyperkinesis/pathology , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Pedigree , Phosphodiesterase Inhibitors/metabolism , Sequence Alignment
2.
Bioorg Med Chem ; 24(16): 3513-20, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27297999

ABSTRACT

Oxytocin (OT) is a peptide hormone agonist of the OT receptor (OTR) that plays an important role in social behaviors such as pair bonding, maternal bonding and trust. The pharmaceutical development of OT as an oral peptide therapeutic has been hindered historically by its unfavorable physicochemical properties, including molecular weight, polarity and number of hydrogen bond donors, which determines poor cell permeability. Here we describe the first systematic study of single and multiple N-methylations of OT and their effect on physicochemical properties as well as potency at the OT receptor. The agonist EC50 and percent effect for OTR are reported and show that most N-methylations are tolerated but with some loss in potency compared to OT. The effect of N-methylation on exposed polarity is assessed through the EPSA chromatographic method and the results validated against NMR temperature coefficient experiments and the determination of NMR solution structures. We found that backbone methylation of residues not involved in IMHB and removal of the N-terminal amine can significantly reduce the exposed polarity of peptides, and yet retain a significant OTR agonist activity. The results of this study also expose the potential challenge of using the N-methylation strategy for the OT system; while exposed polarity is reduced, in some cases backbone methylation produces a significant conformational change that compromises agonist activity. The data presented provides useful insights on the SAR of OT and suggests future design strategies that can be used to develop more permeable OTR agonists based on the OT framework.


Subject(s)
Oxytocin/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Methylation , Structure-Activity Relationship , Temperature
3.
Bioorg Med Chem Lett ; 24(22): 5219-23, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25442316

ABSTRACT

Herein we report the identification of (+)-N-(2-((1H-pyrazol-1-yl)methyl)-3-((1R,3r,5S)-6'-fluoro-8-azaspiro[bicyclo[3.2.1]octane-3,1'-isochroman]-8-yl)propyl)-N-[(3)H]-methylacetamide {[(3)H]PF-7191 [(+)-11]} as a promising radiotracer for the nociceptin opioid peptide (NOP) receptor. (+)-11 demonstrated high NOP binding affinity (Ki = 0.1 nM), excellent selectivity over other opioid receptors (>1000×) and good brain permeability in rats (C(b,u)/C(p,u) = 0.29). Subsequent characterization of [(3)H](+)-11 showed a high level of specific binding and a brain bio-distribution pattern consistent with known NOP receptor expression. Furthermore, the in vivo brain binding of [(3)H](+)-11 in rats was inhibited by a selective NOP receptor antagonist in a dose-responsive manner. This overall favorable profile indicated that [(3)H](+)-11 is a robust radiotracer for pre-clinical in vivo receptor occupancy (RO) measurements and a possible substrate for carbon-11 labeling for positron emission tomography (PET) imaging in higher species.


Subject(s)
Brain/metabolism , Drug Design , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , Tritium/metabolism , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Opioid Peptides/chemistry , Protein Binding/physiology , Rats , Tritium/chemistry , Nociceptin Receptor
4.
J Pharmacol Exp Ther ; 341(3): 681-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22408061

ABSTRACT

5-Hydroxytryptamine (5-HT)(4) receptor agonists reportedly stimulate brain acetylcholine (ACh) release, a property that might provide a new pharmacological approach for treating cognitive deficits associated with Alzheimer's disease. The purpose of this study was to compare the binding affinities, functional activities, and effects on neuropharmacological responses associated with cognition of two highly selective 5-HT(4) receptor agonists, prucalopride and 6,7-dihydro-4-hydroxy-7-isopropyl-6-oxo-N-[3-(piperidin-1-yl)propyl]thieno[2,3-b]pyridine-5-carboxamide (PRX-03140). In vitro, prucalopride and PRX-03140 bound to native rat brain 5-HT(4) receptors with K(i) values of 30 nM and 110 nM, respectively, and increased cAMP production in human embryonic kidney-293 cells expressing recombinant rat 5-HT(4) receptors. In vivo receptor occupancy studies established that prucalopride and PRX-03140 were able to penetrate the brain and bound to 5-HT(4) receptors in rat brain, achieving 50% receptor occupancy at free brain exposures of 330 nM and 130 nM, respectively. Rat microdialysis studies revealed that prucalopride maximally increased ACh and histamine levels in the prefrontal cortex at 5 and 10 mg/kg, whereas PRX-03140 significantly increased cortical histamine levels at 50 mg/kg, failing to affect ACh release at doses lower than 150 mg/kg. In combination studies, donepezil-induced increases in cortical ACh levels were potentiated by prucalopride and PRX-03140. Electrophysiological studies in rats demonstrated that both compounds increased the power of brainstem-stimulated hippocampal θ oscillations at 5.6 mg/kg. These findings show for the first time that the 5-HT(4) receptor agonists prucalopride and PRX-03140 can increase cortical ACh and histamine levels, augment donepezil-induced ACh increases, and increase stimulated-hippocampal θ power, all neuropharmacological parameters consistent with potential positive effects on cognitive processes.


Subject(s)
Acetylcholine/metabolism , Benzofurans/pharmacology , Hippocampus/drug effects , Histamine/metabolism , Prefrontal Cortex/drug effects , Pyridones/pharmacology , Serotonin 5-HT4 Receptor Agonists/pharmacology , Thiophenes/pharmacology , Animals , Area Under Curve , Chromatography, High Pressure Liquid , Electroencephalography , Hippocampus/metabolism , Humans , Male , Microdialysis , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT4/metabolism , Serotonin/chemistry , Serotonin/metabolism , Tandem Mass Spectrometry
5.
Sci Rep ; 9(1): 6076, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30967561

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 8(1): 897, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343833

ABSTRACT

The recent increase in the number of X-ray crystal structures of G-protein coupled receptors (GPCRs) has been enabling for structure-based drug design (SBDD) efforts. These structures have revealed that GPCRs are highly dynamic macromolecules whose function is dependent on their intrinsic flexibility. Unfortunately, the use of static structures to understand ligand binding can potentially be misleading, especially in systems with an inherently high degree of conformational flexibility. Here, we show that docking a set of dopamine D3 receptor compounds into the existing eticlopride-bound dopamine D3 receptor (D3R) X-ray crystal structure resulted in poses that were not consistent with results obtained from site-directed mutagenesis experiments. We overcame the limitations of static docking by using large-scale high-throughput molecular dynamics (MD) simulations and Markov state models (MSMs) to determine an alternative pose consistent with the mutation data. The new pose maintains critical interactions observed in the D3R/eticlopride X-ray crystal structure and suggests that a cryptic pocket forms due to the shift of a highly conserved residue, F6.52. Our study highlights the importance of GPCR dynamics to understand ligand binding and provides new opportunities for drug discovery.


Subject(s)
Receptors, Dopamine D3/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Animals , Binding Sites/physiology , Cell Line , Crystallography, X-Ray/methods , Humans , Ligands , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Mutagenesis, Site-Directed/methods , Protein Binding/physiology , Salicylamides/chemistry , Salicylamides/metabolism , Sf9 Cells
7.
ACS Chem Neurosci ; 8(1): 165-177, 2017 01 18.
Article in English | MEDLINE | ID: mdl-27715007

ABSTRACT

Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 Ki = 3.1 nM), good subtype selectivity over D2R (D2 Ki = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.


Subject(s)
Analgesics, Opioid/adverse effects , Dopamine D2 Receptor Antagonists/chemistry , Dopamine D2 Receptor Antagonists/pharmacology , Drug-Seeking Behavior/drug effects , Receptors, Dopamine D3/antagonists & inhibitors , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Cell Line, Transformed , Conditioning, Operant/drug effects , Dopamine Agents/pharmacology , Dose-Response Relationship, Drug , Fentanyl/adverse effects , Humans , Male , Neuroblastoma/pathology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Self Administration , Sulfonamides/chemistry , Sulfonamides/pharmacology
8.
J Pharm Sci ; 102(9): 3277-93, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23589342

ABSTRACT

4-{4-[4-Tetrahydrofuran-3-yloxy)-benzo[d]isoxazol-3-yloxymethyl]-piperidin-1-ylmethyl}-tetrahydropyran-4-ol (PF-4995274, TBPT) is a new agent that is a partial agonist of the human serotonin-4 (5-HT4) receptor and is under investigation for neurological disorders. Metabolism of TBPT was examined in vitro in human liver microsomes and human hepatocytes. Metabolites were also identified in the plasma of healthy human subjects in a phase 1 clinical study. Human-derived metabolite profiles were compared with corresponding profiles obtained in laboratory animal species. There were two major routes of metabolism in vitro: N-dealkylation of the methyltetrahydropyran moiety (M1) and hydroxylation at the seven position of the benzisoxazole moiety (M4). These were also observed in human plasma; however, in that matrix, the major metabolite was an unusual cyclized oxazolidine entity (M2). M2 was proposed to be formed via generation of an intermediate 4° iminium ion on the piperidine ring followed by spontaneous cyclization by attack of the ß-hydroxyl substituent of the tetrahydropyran ring to form a cyclized oxazolidine product. An authentic standard of the metabolite was generated using a methylene-blue-sensitized photochemical oxidation reaction as well as microbial transformation. Further investigation of this metabolite showed that it also possessed 5-HT4 agonism activity similar to the parent. The metabolite was 150-fold more highly protein bound in human plasma than TBPT, which is consistent with its presence as a major circulating metabolite while being only a minor metabolite in in vitro systems. Overall, this illustrates the importance of understanding the complex dispositional properties of a pharmacologically active metabolite.


Subject(s)
Furans/metabolism , Hepatocytes/metabolism , Microsomes, Liver/metabolism , Serotonin 5-HT4 Receptor Agonists/metabolism , Animals , Blood Proteins/metabolism , Brain/metabolism , Cyclization , Dealkylation , Dogs , Female , Furans/chemistry , Furans/pharmacokinetics , Furans/pharmacology , Humans , Hydroxylation , Male , Oxazoles/chemistry , Oxazoles/metabolism , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/chemistry , Serotonin 5-HT4 Receptor Agonists/pharmacokinetics , Serotonin 5-HT4 Receptor Agonists/pharmacology
9.
J Med Chem ; 55(21): 9240-54, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-22974325

ABSTRACT

The cognitive impairments observed in Alzheimer's disease (AD) are in part a consequence of reduced acetylcholine (ACh) levels resulting from a loss of cholinergic neurons. Preclinically, serotonin 4 receptor (5-HT(4)) agonists are reported to modulate cholinergic function and therefore may provide a new mechanistic approach for treating cognitive deficits associated with AD. Herein we communicate the design and synthesis of potent, selective, and brain penetrant 5-HT(4) agonists. The overall goal of the medicinal chemistry strategy was identification of structurally diverse clinical candidates with varying intrinsic activities. The exposure-response relationships between binding affinity, intrinsic activity, receptor occupancy, drug exposure, and pharmacodynamic activity in relevant preclinical models of AD were utilized as key selection criteria for advancing compounds. On the basis of their excellent balance of pharmacokinetic attributes and safety, two lead 5-HT(4) partial agonist candidates 2d and 3 were chosen for clinical development.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Indoles/chemical synthesis , Piperidines/chemical synthesis , Pyrans/chemical synthesis , Serotonin 5-HT4 Receptor Agonists/chemical synthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Alzheimer Disease/psychology , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/biosynthesis , Dogs , Drug Partial Agonism , HEK293 Cells , Haplorhini , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Madin Darby Canine Kidney Cells , Male , Microsomes, Liver/metabolism , Permeability , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Isoforms/metabolism , Pyrans/pharmacokinetics , Pyrans/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/pharmacokinetics , Serotonin 5-HT4 Receptor Agonists/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL