Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Nature ; 543(7643): 122-125, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28178237

ABSTRACT

Human cells have twenty-three pairs of chromosomes. In cancer, however, genes can be amplified in chromosomes or in circular extrachromosomal DNA (ecDNA), although the frequency and functional importance of ecDNA are not understood. We performed whole-genome sequencing, structural modelling and cytogenetic analyses of 17 different cancer types, including analysis of the structure and function of chromosomes during metaphase of 2,572 dividing cells, and developed a software package called ECdetect to conduct unbiased, integrated ecDNA detection and analysis. Here we show that ecDNA was found in nearly half of human cancers; its frequency varied by tumour type, but it was almost never found in normal cells. Driver oncogenes were amplified most commonly in ecDNA, thereby increasing transcript level. Mathematical modelling predicted that ecDNA amplification would increase oncogene copy number and intratumoural heterogeneity more effectively than chromosomal amplification. We validated these predictions by quantitative analyses of cancer samples. The results presented here suggest that ecDNA contributes to accelerated evolution in cancer.


Subject(s)
DNA Copy Number Variations/genetics , Evolution, Molecular , Gene Amplification/genetics , Genetic Heterogeneity , Models, Genetic , Neoplasms/genetics , Oncogenes/genetics , Chromosomes, Human/genetics , Cytogenetic Analysis , DNA Mutational Analysis , Genome, Human/genetics , Humans , Metaphase/genetics , Neoplasms/classification , RNA, Messenger/analysis , RNA, Neoplasm/genetics , Reproducibility of Results , Software
2.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26061751

ABSTRACT

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Subject(s)
DNA, Neoplasm/analysis , Genes, p53 , Glioma/genetics , Mutation , Adolescent , Adult , Aged , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Cluster Analysis , Female , Glioblastoma/genetics , Glioma/metabolism , Glioma/mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Proportional Hazards Models , Sequence Analysis, DNA , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 112(30): E4055-64, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26159421

ABSTRACT

The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development.


Subject(s)
Brain Neoplasms/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Histone Demethylases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Expression Profiling , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neoplasms/metabolism , Stochastic Processes
4.
Genes Dev ; 24(10): 1059-72, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20478998

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Sonic Hedgehog (SHH) signaling drives a minority of MB, correlating with desmoplastic pathology and favorable outcome. The majority, however, arises independently of SHH and displays classic or large cell anaplastic (LCA) pathology and poor prognosis. To identify common signaling abnormalities, we profiled mRNA, demonstrating misexpression of MYCN in the majority of human MB and negligible expression in normal cerebella. We clarified a role in pathogenesis by targeting MYCN (and luciferase) to cerebella of transgenic mice. MYCN-driven MB showed either classic or LCA pathologies, with Shh signaling activated in approximately 5% of tumors, demonstrating that MYCN can drive MB independently of Shh. MB arose at high penetrance, consistent with a role for MYCN in initiation. Tumor burden correlated with bioluminescence, with rare metastatic spread to the leptomeninges, suggesting roles for MYCN in both progression and metastasis. Transient pharmacological down-regulation of MYCN led to both clearance and senescence of tumor cells, and improved survival. Targeted expression of MYCN thus contributes to initiation, progression, and maintenance of MB, suggesting a central role for MYCN in pathogenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , Medulloblastoma/physiopathology , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Amino Acid Transport System X-AG/genetics , Amino Acid Transport System X-AG/metabolism , Animals , Cell Cycle/physiology , Cellular Senescence/physiology , Cerebellum/metabolism , Down-Regulation , Gene Expression Profiling , Genomic Instability , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/pathology , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neoplasm Metastasis/pathology , Nuclear Proteins/genetics , Oncogene Proteins/genetics
5.
PLoS Genet ; 9(2): e1003253, 2013.
Article in English | MEDLINE | ID: mdl-23459592

ABSTRACT

Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK) and Pi-3 kinase (PI3K) signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers.


Subject(s)
Cell Transformation, Neoplastic , Glioblastoma , Multiprotein Complexes , Oncogene Protein v-akt , Phosphatidylinositol 3-Kinases , TOR Serine-Threonine Kinases , Animals , Apoptosis/genetics , Astrocytes/cytology , Astrocytes/metabolism , Cell Proliferation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation, Neoplastic , Genome, Insect , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mechanistic Target of Rapamycin Complex 2 , Mice , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neuroglia/metabolism , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
6.
Proc Natl Acad Sci U S A ; 110(22): 9042-7, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23671068

ABSTRACT

Lymph nodes are initial sites of tumor metastasis, yet whether the lymph node microenvironment actively promotes tumor metastasis remains unknown. We show here that VEGF-C/PI3Kα-driven remodeling of lymph nodes promotes tumor metastasis by activating integrin α4ß1 on lymph node lymphatic endothelium. Activated integrin α4ß1 promotes expansion of the lymphatic endothelium in lymph nodes and serves as an adhesive ligand that captures vascular cell adhesion molecule 1 (VCAM-1)(+) metastatic tumor cells, thereby promoting lymph node metastasis. Experimental induction of α4ß1 expression in lymph nodes is sufficient to promote tumor cell adhesion to lymphatic endothelium and lymph node metastasis in vivo, whereas genetic or pharmacological blockade of integrin α4ß1 or VCAM-1 inhibits it. As lymph node metastases accurately predict poor disease outcome, and integrin α4ß1 is a biomarker of lymphatic endothelium in tumor-draining lymph nodes from animals and patients, these results indicate that targeting integrin α4ß1 or VCAM to inhibit the interactions of tumor cells with the lymph node microenvironment may be an effective strategy to suppress tumor metastasis.


Subject(s)
Carcinoma, Ductal, Breast/pathology , Endothelium, Lymphatic/metabolism , Integrin alpha4beta1/metabolism , Lymph Nodes/metabolism , Neoplasm Metastasis/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Analysis of Variance , Animals , Cell Adhesion/physiology , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunohistochemistry , Lymphangiogenesis/physiology , Mice , Neoplasm Metastasis/prevention & control , Vascular Cell Adhesion Molecule-1/physiology
7.
Proc Natl Acad Sci U S A ; 110(47): E4530-9, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24170860

ABSTRACT

Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/drug therapy , Genetic Therapy/methods , Oligonucleotides, Antisense/pharmacology , Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Blotting, Southern , C9orf72 Protein , Central Nervous System/cytology , Central Nervous System/metabolism , DNA Primers/genetics , Fibroblasts/metabolism , Frontotemporal Lobar Degeneration/genetics , Genotype , In Situ Hybridization, Fluorescence , Mice , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
8.
J Cell Sci ; 126(Pt 4): 904-13, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23321642

ABSTRACT

Breast cancer and melanoma cells commonly metastasize to the brain using homing mechanisms that are poorly understood. Cancer patients with brain metastases display poor prognosis and survival due to the lack of effective therapeutics and treatment strategies. Recent work using intravital microscopy and preclinical animal models indicates that metastatic cells colonize the brain, specifically in close contact with the existing brain vasculature. However, it is not known how contact with the vascular niche promotes microtumor formation. Here, we investigate the role of connexins in mediating early events in brain colonization using transparent zebrafish and chicken embryo models of brain metastasis. We provide evidence that breast cancer and melanoma cells utilize connexin gap junction proteins (Cx43, Cx26) to initiate brain metastatic lesion formation in association with the vasculature. RNAi depletion of connexins or pharmacological blocking of connexin-mediated cell-cell communication with carbenoxolone inhibited brain colonization by blocking tumor cell extravasation and blood vessel co-option. Activation of the metastatic gene twist in breast cancer cells increased Cx43 protein expression and gap junction communication, leading to increased extravasation, blood vessel co-option and brain colonization. Conversely, inhibiting twist activity reduced Cx43-mediated gap junction coupling and brain colonization. Database analyses of patient histories revealed increased expression of Cx26 and Cx43 in primary melanoma and breast cancer tumors, respectively, which correlated with increased cancer recurrence and metastasis. Together, our data indicate that Cx43 and Cx26 mediate cancer cell metastasis to the brain and suggest that connexins might be exploited therapeutically to benefit cancer patients with metastatic disease.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/complications , Breast Neoplasms/metabolism , Connexins/metabolism , Melanoma/complications , Melanoma/metabolism , Animals , Brain Neoplasms/genetics , Breast Neoplasms/genetics , Chick Embryo , Connexin 26 , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Female , Humans , Melanoma/genetics , Mice , Mice, Nude , Neoplasm Metastasis/genetics , RNA Interference
9.
Proc Natl Acad Sci U S A ; 109(35): 14164-9, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22891331

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.


Subject(s)
Brain Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Glioblastoma/drug therapy , PTEN Phosphohydrolase/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Astrocytes/cytology , Astrocytes/physiology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/physiology , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Mice, Mutant Strains , Mice, Nude , PTEN Phosphohydrolase/genetics , Phosphorylation/drug effects , Phosphorylation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Transplantation, Heterologous , Tumor Cells, Cultured , Tyrosine/metabolism
10.
J Neurooncol ; 120(3): 539-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25135423

ABSTRACT

A subset of patients with high-grade glioma and brain metastases who are treated with bevacizumab develop regions of marked and persistent restricted diffusion that do not reflect recurrent tumor. Here, we quantify the degree of restricted diffusion and the relative cerebral blood volume (rCBV) within these regions of bevacizumab-related imaging abnormality (BRIA) in order to facilitate differentiation of these lesions from recurrent tumor. Six patients with high-grade glioma and two patients with brain metastases who developed regions of restricted diffusion after initiation of bevacizumab were included. Six pre-treatment GBM controls were also included. Restriction spectrum imaging (RSI) was used to create diffusion maps which were co-registered with rCBV maps. Within regions of restricted diffusion, mean RSI values and mean rCBV values were calculated for patients with BRIA and for the GBM controls. These values were also calculated for normal-appearing white matter (NAWM). RSI values in regions of restricted diffusion were higher for both BRIA and tumor when compared to NAWM; furthermore RSI values in BRIA were slightly higher than in tumor. Conversely, rCBV values were very low in BRIA-lower than both tumor and NAWM. However, there was only a trend for rCBV values to be higher in tumor than in NAWM. When evaluating areas of restricted diffusion in patients with high-grade glioma or brain metastases treated with bevacizumab, RSI is better able to detect the presence of pathology whereas rCBV is better able to differentiate BRIA from tumor. Thus, combining these tools may help to differentiate necrotic tissue related to bevacizumab treatment from recurrent tumor.


Subject(s)
Angiogenesis Inhibitors/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Glioma/pathology , Perfusion Imaging/methods , Adult , Aged , Angiogenesis Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Bevacizumab , Blood Volume , Brain/drug effects , Brain/pathology , Brain/physiopathology , Brain/radiation effects , Brain Neoplasms/drug therapy , Brain Neoplasms/physiopathology , Brain Neoplasms/radiotherapy , Cerebrovascular Circulation , Diffusion , Female , Glioma/drug therapy , Glioma/physiopathology , Glioma/radiotherapy , Humans , Male , Middle Aged , Neoplasm Grading , White Matter/drug effects , White Matter/pathology , White Matter/physiopathology , White Matter/radiation effects
11.
J Pediatr Hematol Oncol ; 36(6): 451-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24309609

ABSTRACT

Brain tumors are the most common solid tumor diagnosed in childhood that account for significant morbidity and mortality. New therapies are urgently needed; hence, we conducted the first ever prospective open-label phase II trials of the biological response modifier, poly-ICLC, in children with brain tumors. Poly-ICLC is a synthetic double-stranded RNA that has direct antiviral, antineoplastic, and immune adjuvant effects. A total of 47 children representing a variety of brain tumor histopathologic subtypes were treated with poly-ICLC. On the basis of the results of the initial phase II trial, an expanded prospective phase II trial in low-grade glioma (LGG) has been initiated. MRI was used to acquire volume-based measures of tumor response. No dose-limiting toxicities have been observed. In the initial study 3 of 12 subjects with progressive high-grade gliomas (HGGs) responded, and 2 of 4 children with progressive LGG experienced stable disease for 18 to 24 months. In the follow-up LGG phase II study, 2 of 5 LGG patients were stable over 18 months, with 1 stable for 6 months. Overall 5 of 10 LGG patients have responded. On the basis of low toxicity and the promising LGG response, poly-ICLC may be effective for childhood LGG, and the results justify biomarker studies for personalization of poly-ICLC as a single agent or adjuvant.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/therapy , Carboxymethylcellulose Sodium/analogs & derivatives , Glioma/therapy , Poly I-C/administration & dosage , Polylysine/analogs & derivatives , Adolescent , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Brain Neoplasms/pathology , Carboxymethylcellulose Sodium/administration & dosage , Carboxymethylcellulose Sodium/adverse effects , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Glioma/pathology , Humans , Infant , Magnetic Resonance Angiography , Male , Neoplasm Grading , Poly I-C/adverse effects , Polylysine/administration & dosage , Polylysine/adverse effects , Prospective Studies , Treatment Outcome , Young Adult
12.
Proc Natl Acad Sci U S A ; 108(38): 15984-9, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21896743

ABSTRACT

A truncated and constitutively active form of the EGF receptor, variant III (EGFRvIII), is a major determinant of tumor growth and progression in glioblastoma multiforme (GBM). Extensive bidirectional crosstalk occurs in the cell-signaling pathways downstream of the EGFR and the urokinase-type plasminogen activator receptor (uPAR); however, crosstalk between EGFRvIII and uPAR has not been examined. Here, we show that uPAR does not regulate ERK activation in EGFRvIII-expressing GBM cells; however, in GBM cells isolated from four separate xenografts in which EGFRvIII expression was down-regulated in vivo, uPAR assumed a major role in sustaining ERK activation. Phosphorylation of Tyr-845 in the EGFR, which is mediated by Src family kinases, depended on uPAR in EGFRvIII-expressing GBM cells. Activation of the mitogenic and prosurvival transcription factor, STAT5b, downstream of EGFRvIII, also required uPAR. The EGFR-selective tyrosine kinase inhibitors, erlotinib and gefitinib, blocked not only EGFRvIII signaling to ERK but also uPAR-dependent STAT5b activation. uPAR gene silencing in EGFRvIII-expressing GBM cells and in cells from tumors that escaped dependency on EGFRvIII decreased cell survival and proliferation. Xenografts of EGFRvIII-expressing cancer cell lines and a human GBM, which was propagated as a xenograft, were robustly immunopositive for uPAR and phospho-Tyr-845 by immunohistochemistry. A human GBM in which the EGFR gene was amplified without truncation was immunonegative for both uPAR and phospho-Tyr-845. These studies identify distinct cell-signaling activities for uPAR in GBM cells that express EGFRvIII and in cells released from dormancy when EGFRvIII is neutralized. uPAR and its crosstalk pathways with EGFRvIII emerge as logical targets for therapeutics development in GBM.


Subject(s)
Cell Proliferation , ErbB Receptors/metabolism , Glioblastoma/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Brain/metabolism , Brain/pathology , Cell Line , Cell Line, Tumor , Cell Survival , Doxorubicin/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Erlotinib Hydrochloride , Gefitinib , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Immunoblotting , Mice , Mice, Nude , Mice, SCID , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , RNA Interference , Receptor Cross-Talk , Receptors, Urokinase Plasminogen Activator/genetics , STAT5 Transcription Factor/metabolism , Transplantation, Heterologous , Tyrosine/metabolism
13.
Nat Cancer ; 4(2): 240-256, 2023 02.
Article in English | MEDLINE | ID: mdl-36759733

ABSTRACT

BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through ß-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Cyclooxygenase 2/genetics , Cyclooxygenase 2/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Signaling System , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , src-Family Kinases/genetics , src-Family Kinases/therapeutic use
14.
Radiology ; 254(2): 564-76, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20093527

ABSTRACT

PURPOSE: To determine whether magnetic resonance (MR) imaging is influenced by genetic and cellular features of glioblastoma multiforme (GBM) aggressiveness. MATERIALS AND METHODS: In this HIPAA-compliant institutional review board-approved study, multiple enhancing and peritumoral nonenhancing stereotactic neurosurgical biopsy samples from treatment-naïve GBMs were collected prospectively, with guidance from cerebral blood volume (CBV) MR imaging measurements. By using monoclonal antibodies, tissue specimens were examined for microvascular expression, hypoxia, tumor and overall cellular density, and histopathologic features of GBM aggressiveness. Genetic expression patterns were investigated with RNA microarrays. Imaging and histopathologic variables were compared with the Welch t test and Pearson correlations. Microarray analysis was performed by using false discovery rate (FDR) statistics. RESULTS: Tumor biopsy of 13 adult patients yielded 16 enhancing and 14 peritumoral nonenhancing specimens. Enhancing regions had elevated relative CBV and reduced relative apparent diffusion coefficient (ADC) measurements compared with peritumoral nonenhancing biopsy regions (P < .01). A positive correlation was found between relative CBV and all histopathologic features of aggressiveness (P < .04). An inverse correlation was found between relative ADC and all histopathologic features of aggressiveness (P < .05). RNA expression patterns between tumor regions were found to be significantly different (FDR < 0.05), with hierarchical clustering by biopsy region only. CONCLUSION: These findings suggest MR imaging is significantly influenced by GBM genetic and cellular biologic features of aggressiveness and imply physiologic MR imaging may be useful in pinpointing regions of highest malignancy within heterogeneous tissues, thus facilitating histologic grading of primary glial brain tumors.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Magnetic Resonance Imaging/methods , Adult , Aged , Biopsy , Contrast Media , Female , Gene Expression Regulation, Neoplastic , Humans , Imaging, Three-Dimensional , Linear Models , Male , Microarray Analysis , Middle Aged , Prospective Studies , RNA/metabolism
15.
J Neurooncol ; 97(1): 33-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19705067

ABSTRACT

Recent evidence suggests the Akt-mTOR pathway may play a role in development of low-grade gliomas (LGG). We sought to evaluate whether activation of this pathway correlates with survival in LGG by examining expression patterns of proteins within this pathway. Forty-five LGG tumor specimens from newly diagnosed patients were analyzed for methylation of the putative 5'-promoter region of PTEN using methylation-specific PCR as well as phosphorylation of S6 and PRAS40 and expression of PTEN protein using immunohistochemistry. Relationships between molecular markers and overall survival (OS) were assessed using Kaplan-Meier methods and exact log-rank test. Correlation between molecular markers was determined using the Mann-Whitney U and Spearman Rank Correlation tests. Eight of the 26 patients with methylated PTEN died, as compared to 1 of 19 without methylation. There was a trend towards statistical significance, with PTEN methylated patients having decreased survival (P = 0.128). Eight of 29 patients that expressed phospho-S6 died, whereas all 9 patients lacking p-S6 expression were alive at last follow-up. There was an inverse relationship between expression of phospho-S6 and survival (P = 0.029). There was a trend towards decreased survival in patients expressing phospho-PRAS40 (P = 0.077). Analyses of relationships between molecular markers demonstrated a statistically significant positive correlation between expression of p-S6(235) and p-PRAS40 (P = 0.04); expression of p-S6(240) correlated positively with PTEN methylation (P = 0.04) and negatively with PTEN expression (P = 0.03). Survival of LGG patients correlates with phosphorylation of S6 protein. This relationship supports the use of selective mTOR inhibitors in the treatment of low grade glioma.


Subject(s)
Brain Neoplasms/mortality , Glioma/mortality , Intracellular Signaling Peptides and Proteins/metabolism , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Adult , Brain Neoplasms/drug therapy , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioma/drug therapy , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Phosphorylation/drug effects , Predictive Value of Tests , Retrospective Studies , Serine/metabolism , Signal Transduction/drug effects , Statistics, Nonparametric , Sulfites/pharmacology , Sulfites/therapeutic use , TOR Serine-Threonine Kinases , Young Adult
16.
Neuro Oncol ; 11(5): 477-87, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19139420

ABSTRACT

Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.


Subject(s)
Brain Neoplasms/genetics , Gene Dosage , Glioblastoma/genetics , RNA, Messenger/analysis , Animals , Cell Proliferation , Gene Amplification , Humans , Oligonucleotide Array Sequence Analysis , Transcription, Genetic , Transplantation, Heterologous
17.
Cancer Res ; 79(9): 2208-2219, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30885981

ABSTRACT

Choroid plexus carcinoma (CPC) is a rare brain tumor that occurs most commonly in very young children and has a dismal prognosis despite intensive therapy. Improved outcomes for patients with CPC depend on a deeper understanding of the mechanisms underlying the disease. Here we developed transgenic models of CPCs by activating the Myc oncogene and deleting the Trp53 tumor suppressor gene in murine neural stem cells or progenitors. Murine CPC resembled their human counterparts at a histologic level, and like the hypodiploid subset of human CPC, exhibited multiple whole-chromosome losses, particularly of chromosomes 8, 12, and 19. Analysis of murine and human CPC gene expression profiles and copy number changes revealed altered expression of genes involved in cell cycle, DNA damage response, and cilium function. High-throughput drug screening identified small molecule inhibitors that decreased the viability of CPC. These models will be valuable tools for understanding the biology of choroid plexus tumors and for testing novel approaches to therapy. SIGNIFICANCE: This study describes new mouse models of choroid plexus carcinoma and uses them to investigate the biology and therapeutic responsiveness of this highly malignant pediatric brain tumor.


Subject(s)
Carcinoma/pathology , Choroid Plexus Neoplasms/pathology , Neural Stem Cells/pathology , Proto-Oncogene Proteins c-myc/physiology , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/physiology , Animals , Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Carcinoma/genetics , Choroid Plexus Neoplasms/drug therapy , Choroid Plexus Neoplasms/genetics , High-Throughput Screening Assays , Mice , Mice, Knockout , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Tumor Cells, Cultured
18.
Brain Pathol ; 18(3): 307-16, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18532929

ABSTRACT

Controversy surrounds the recent 2007 WHO Classification of Tumours of the Nervous System. A number of nosologic issues remain to be resolved, some a reflection of conceptual disagreement, others the result of inadequate data to permit their definitive resolution. Among these and discussed herein are (i) the nosologic place of highly anaplastic oligoastrocytic tumors, (ii) the forms and significance of microvascular changes in high-grade gliomas, (iii) the makeup of the glioneuronal tumors category, (iv) the subclassification of pineal parenchymal tumors of intermediate type, and (v) the classification of principle forms of mesenchymal neoplasms, specifically hemangiopericytoma and solitary fibrous tumor. These issues and others are the substance of this and an upcoming companion article.


Subject(s)
Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/pathology , Glioblastoma/classification , Glioblastoma/pathology , World Health Organization , Humans , Prognosis
19.
Brain Pathol ; 18(2): 172-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18093250

ABSTRACT

Meningioma tumor growth involves the subarachnoid space that contains the cerebrospinal fluid. Modeling tumor growth in this microenvironment has been associated with widespread leptomeningeal dissemination, which is uncharacteristic of human meningiomas. Consequently, survival times and tumor properties are varied, limiting their utility in testing experimental therapies. We report the development and characterization of a reproducible orthotopic skull-base meningioma model in athymic mice using the IOMM-Lee cell line. Localized tumor growth was obtained by using optimal cell densities and matrigel as the implantation medium. Survival times were within a narrow range of 17-21 days. The xenografts grew locally compressing surrounding brain tissue. These tumors had histopathologic characteristics of anaplastic meningiomas including high cellularity, nuclear pleomorphism, cellular pattern loss, necrosis and conspicuous mitosis. Similar to human meningiomas, considerable invasion of the dura and skull and some invasion of adjacent brain along perivascular tracts were observed. The pattern of hypoxia was also similar to human malignant meningiomas. We use bioluminescent imaging to non-invasively monitor the growth of the xenografts and determine the survival benefit from temozolomide treatment. Thus, we describe a malignant meningioma model system that will be useful for investigating the biology of meningiomas and for preclinical assessment of therapeutic agents.


Subject(s)
Meningeal Neoplasms/pathology , Meningioma/pathology , Neoplasm Transplantation/methods , Skull Base Neoplasms/pathology , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line, Tumor/physiology , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Green Fluorescent Proteins/metabolism , Meningeal Neoplasms/drug therapy , Meningeal Neoplasms/etiology , Meningioma/drug therapy , Meningioma/etiology , Mice , Mice, Nude , Skull Base Neoplasms/drug therapy , Skull Base Neoplasms/etiology , Temozolomide , Tetrazolium Salts , Thiazoles , Time Factors , Tumor Suppressor Proteins/metabolism
20.
BMC Med ; 6: 14, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18577219

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. METHODS: We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. RESULTS: Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III) and glioblastoma multiforme (World Health Organization grade IV) relative to non-neoplastic brain tissue (P < 0.01), and were increased 8- to 20-fold during differentiation of cultured mouse neural stem cells following growth factor withdrawal. Expression of microRNA-137 was increased 3- to 12-fold in glioblastoma multiforme cell lines U87 and U251 following inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC). Transfection of microRNA-124 or microRNA-137 induced morphological changes and marker expressions consistent with neuronal differentiation in mouse neural stem cells, mouse oligodendroglioma-derived stem cells derived from S100 beta-v-erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969). Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811) proteins. CONCLUSION: microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse oligodendroglioma-derived stem cells and human glioblastoma multiforme-derived stem cells and induce glioblastoma multiforme cell cycle arrest. These results suggest that targeted delivery of microRNA-124 and/or microRNA-137 to glioblastoma multiforme tumor cells may be therapeutically efficacious for the treatment of this disease.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , MicroRNAs/metabolism , Neurons/pathology , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Animals , Cell Cycle/genetics , Cell Differentiation/genetics , Down-Regulation , Gene Expression , Humans , Mice , Neoplastic Stem Cells , Transfection , Tumor Cells, Cultured , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL