Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nucleic Acids Res ; 51(8): 4055-4063, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36477864

ABSTRACT

The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.


Subject(s)
DNA , Nanostructures , DNA/chemistry , Nanotechnology , RNA , Molecular Dynamics Simulation
2.
Bioinformatics ; 36(3): 751-757, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31393558

ABSTRACT

MOTIVATION: Template-based and template-free methods have both been widely used in predicting the structures of protein-protein complexes. Template-based modeling is effective when a reliable template is available, while template-free methods are required for predicting the binding modes or interfaces that have not been previously observed. Our goal is to combine the two methods to improve computational protein-protein complex structure prediction. RESULTS: Here, we present a method to identify and combine high-confidence predictions of a template-based method (SPRING) with a template-free method (ZDOCK). Cross-validated using the protein-protein docking benchmark version 5.0, our method (ZING) achieved a success rate of 68.2%, outperforming SPRING and ZDOCK, with success rates of 52.1% and 35.9% respectively, when the top 10 predictions were considered per test case. In conclusion, a statistics-based method that evaluates and integrates predictions from template-based and template-free methods is more successful than either method independently. AVAILABILITY AND IMPLEMENTATION: ZING is available for download as a Github repository (https://github.com/weng-lab/ZING.git). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , Benchmarking , Computational Biology , Proteins
3.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361773

ABSTRACT

The thrombin binding aptamer (TBA) is a promising nucleic acid-based anticoagulant. We studied the effects of chemical modifications, such as dendrimer Trebler and NHS carboxy group, on TBA with respect to its structures and thrombin binding affinity. The two dendrimer modifications were incorporated into the TBA at the 5' end and the NHS carboxy group was added into the thymine residues in the thrombin binding site of the TBA G-quadruplex (at T4, T13 and both T4/T13) using solid phase oligonucleotide synthesis. Circular dichroism (CD) spectroscopy confirmed that all of these modified TBA variants fold into a stable G-quadruplex. The binding affinity of TBA variants with thrombin was measured by surface plasmon resonance (SPR). The binding patterns and equilibrium dissociation constants (KD) of the modified TBAs are very similar to that of the native TBA. Molecular dynamics simulations studies indicate that the additional interactions or stability enhancement introduced by the modifications are minimized either by the disruption of TBA-thrombin interactions or destabilization elsewhere in the aptamer, providing a rational explanation for our experimental data. Overall, this study identifies potential positions on the TBA that can be modified without adversely affecting its structure and thrombin binding preference, which could be useful in the design and development of more functional TBA analogues.


Subject(s)
Anticoagulants/chemical synthesis , Aptamers, Nucleotide/chemical synthesis , G-Quadruplexes , Oligonucleotides/chemical synthesis , Thrombin/chemistry , Anticoagulants/metabolism , Anticoagulants/pharmacology , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/pharmacology , Base Sequence , Binding Sites , Blood Coagulation/drug effects , Dendrimers/chemistry , Humans , Kinetics , Molecular Dynamics Simulation , Nucleic Acid Conformation , Oligonucleotides/metabolism , Protein Binding , Thermodynamics , Thrombin/antagonists & inhibitors , Thrombin/metabolism
4.
Proteins ; 88(8): 1050-1054, 2020 08.
Article in English | MEDLINE | ID: mdl-31994784

ABSTRACT

We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.


Subject(s)
Molecular Docking Simulation , Peptides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Binding Sites , Humans , Ligands , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Proteins/metabolism , Research Design , Structural Homology, Protein
5.
RNA Biol ; 15(4-5): 537-553, 2018.
Article in English | MEDLINE | ID: mdl-28812932

ABSTRACT

A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.


Subject(s)
Adenosine/metabolism , Genetic Code , Inosine/metabolism , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA, Transfer/chemistry , Adenosine/genetics , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Base Pairing , Deamination , Eukaryota/genetics , Eukaryota/metabolism , Evolution, Molecular , Inosine/genetics , Models, Molecular , Nucleic Acid Conformation , RNA, Transfer/genetics , RNA, Transfer/metabolism
6.
Nucleic Acids Res ; 44(13): 6036-45, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27307604

ABSTRACT

Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNA(Glu) UUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon-anticodon interaction during ribosome binding.


Subject(s)
RNA, Transfer/genetics , RNA/genetics , Ribosomes/genetics , Thiouridine/analogs & derivatives , Anticodon/genetics , Codon/genetics , DNA, B-Form/genetics , Escherichia coli/genetics , Hydrophobic and Hydrophilic Interactions , Nucleic Acid Conformation , Protein Biosynthesis/genetics , RNA/metabolism , RNA, Transfer/metabolism , Ribosomes/metabolism , Thiouridine/metabolism
7.
ACS Chem Biol ; 19(2): 348-356, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38252964

ABSTRACT

A-to-I editing catalyzed by adenosine deaminase acting on RNAs impacts numerous physiological and biochemical processes that are essential for cellular functions and is a big contributor to the infectivity of certain RNA viruses. The outcome of this deamination leads to changes in the eukaryotic transcriptome functionally resembling A-G transitions since inosine preferentially pairs with cytosine. Moreover, hyper-editing or multiple A to G transitions in clusters were detected in measles virus. Inosine modifications either directly on viral RNA or on cellular RNA can have antiviral or pro-viral repercussions. While many of the significant roles of inosine in cellular RNAs are well understood, the effects of hyper-editing of A to I on viral polymerase activity during RNA replication remain elusive. Moreover, biological strategies such as molecular cloning and RNA-seq for transcriptomic interrogation rely on RT-polymerase chain reaction with little to no emphasis placed on the first step, reverse transcription, which may reshape the sequencing results when hypermodification is present. In this study, we systematically explore the influence of inosine modification, varying the number and position of inosines, on decoding outcomes using three different reverse transcriptases (RTs) followed by standard Sanger sequencing. We find that inosine alone or in clusters can differentially affect the RT activity. To gain structural insights into the accommodation of inosine in the polymerase site of HIV-1 reverse transcriptase (HIV-1-RT) and how this structural context affects the base pairing rules for inosine, we performed molecular dynamics simulations of the HIV-1-RT. The simulations highlight the importance of the protein-nucleotide interaction as a critical factor in deciphering the base pairing behavior of inosine clusters. This effort sets the groundwork for decrypting the physiological significance of inosine and linking the fidelity of reverse transcriptase and the possible diverse transcription outcomes of cellular RNAs and/or viral RNAs where hyper-edited inosines are present in the transcripts.


Subject(s)
RNA, Viral , Reverse Transcription , Base Pairing , RNA, Viral/genetics , Inosine/analysis , Inosine/chemistry , Inosine/genetics , Adenosine Deaminase/genetics
8.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559076

ABSTRACT

Post-transcriptional modifications in RNA can significantly impact their structure and function. In particular, transfer RNAs (tRNAs) are heavily modified, with around 100 different naturally occurring nucleotide modifications contributing to codon bias and decoding efficiency. Here, we describe our efforts to investigate the impact of RNA modifications on the structure and stability of tRNA Phenylalanine (tRNA Phe ) from S. cerevisiae using molecular dynamics (MD) simulations. Through temperature replica exchange MD (T-REMD) studies, we explored the unfolding pathway to understand how RNA modifications influence the conformational dynamics of tRNA Phe , both in the presence and absence of magnesium ions (Mg 2+ ). We observe that modified nucleotides in key regions of the tRNA establish a complex network of hydrogen bonds and stacking interactions which is essential for tertiary structure stability of the tRNA. Furthermore, our simulations show that modifications facilitate the formation of ion binding sites on the tRNA. However, high concentrations of Mg 2+ ions can stabilize the tRNA tertiary structure in the absence of modifications. Our findings illuminate the intricate interactions between modifications, magnesium ions, and RNA structural stability.

9.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38014227

ABSTRACT

Synthetic DNA motifs form the basis of nucleic acid nanotechnology, and their biochemical and biophysical properties determine their applications. Here, we present a detailed characterization of switchback DNA, a globally left-handed structure composed of two parallel DNA strands. Compared to a conventional duplex, switchback DNA shows lower thermodynamic stability and requires higher magnesium concentration for assembly but exhibits enhanced biostability against some nucleases. Strand competition and strand displacement experiments show that component sequences have an absolute preference for duplex complements instead of their switchback partners. Further, we hypothesize a potential role for switchback DNA as an alternate structure in sequences containing short tandem repeats. Together with small molecule binding experiments and cell studies, our results open new avenues for switchback DNA in biology and nanotechnology.

10.
Front Chem ; 12: 1330378, 2024.
Article in English | MEDLINE | ID: mdl-38312345

ABSTRACT

The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.

11.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260517

ABSTRACT

Alternative splicing (AS) of Exon 11 of the Insulin Receptor ( INSR ) is highly regulated and disrupted in several human disorders. To better understand INSR exon 11 AS regulation, splicing activity of an INSR exon 11 minigene reporter was measured across a gradient of the AS regulator muscleblind-like 1 protein (MBNL1). The RNA-binding protein Fox-1 (RBFOX1) was added to determine its impact on MBNL1-regulated splicing. The role of the RBFOX1 UGCAUG binding site within intron 11 was assessed across the MBNL1 gradient. Mutating the UGCAUG motif inhibited RBFOX1 regulation of exon 11 and had the unexpected effect of reducing MBNL1 regulation of this exon. Molecular dynamics simulations showed that exon 11 and the adjacent RNA adopts a dynamically stable conformation. Mutation of the RBFOX1 binding site altered RNA structure and dynamics, while a mutation that created an optimal MBNL1 binding site at the RBFOX1 site shifted the RNA back to wild type. An antisense oligonucleotide (ASO) was used to confirm the structure in this region of the pre-mRNA. This example of intronic mutations shifting pre-mRNA structure and dynamics to modulate splicing suggests RNA structure and dynamics should be taken into consideration for AS regulation and therapeutic interventions targeting pre-mRNA.

12.
Nat Commun ; 14(1): 631, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746949

ABSTRACT

Base stacking interactions between adjacent bases in DNA and RNA are important for many biological processes and in biotechnology applications. Previous work has estimated stacking energies between pairs of bases, but contributions of individual bases has remained unknown. Here, we use a Centrifuge Force Microscope for high-throughput single molecule experiments to measure stacking energies between adjacent bases. We found stacking energies strongest between purines (G|A at -2.3 ± 0.2 kcal/mol) and weakest between pyrimidines (C|T at -0.5 ± 0.1 kcal/mol). Hybrid stacking with phosphorylated, methylated, and RNA nucleotides had no measurable effect, but a fluorophore modification reduced stacking energy. We experimentally show that base stacking can influence stability of a DNA nanostructure, modulate kinetics of enzymatic ligation, and assess accuracy of force fields in molecular dynamics simulations. Our results provide insights into fundamental DNA interactions that are critical in biology and can inform design in biotechnology applications.


Subject(s)
Nucleic Acids , Nucleic Acid Conformation , Thermodynamics , DNA/chemistry , RNA/chemistry
13.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778282

ABSTRACT

Myotonic dystrophy is a multisystemic neuromuscular disease caused by either a CTG repeat expansion in DMPK (DM1) or a CCTG repeat expansion in CNBP (DM2). Transcription of the expanded alleles produces toxic gain-of-function RNA that sequester the MBNL family of alternative splicing regulators into ribonuclear foci, leading to pathogenic mis-splicing. There are currently no approved treatments that target the root cause of disease which is the production of the toxic expansion RNA molecules. In this study, using our previously established HeLa DM1 repeat selective screening platform, we identified the natural product quercetin as a selective modulator of toxic RNA levels. Quercetin treatment selectively reduced toxic RNA levels and rescued MBNL dependent mis-splicing in DM1 and DM2 patient derived cell lines and in the HSALR transgenic DM1 mouse model where rescue of myotonia was also observed. Based on our data and its safety profile for use in humans, we have identified quercetin as a priority disease-targeting therapeutic lead for clinical evaluation for the treatment of DM1 and DM2.

14.
J Phys Chem B ; 126(6): 1168-1177, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35119848

ABSTRACT

The 2-methylthio-modification (ms2-) of N6-threonylcarbonyladenosine (t6A37) at position-37 (ms2t6A37) in tRNAUUULys3 provides the needed stability between the tRNA anticodon and the human insulin mRNA codon AAG during translation, as determined by molecular dynamics simulation. Single-nucleoside polymorphisms of the human gene for the enzyme, Cdkal1 that post-transcriptionally modifies t6A37 to ms2t6A37 in tRNAUUULys3, correlate with type 2 diabetes mellitus. Without the ms2-modification, tRNAUUULys3 is incapable of correctly translating the insulin mRNA AAG codon for lysine at the site of protease cleavage between the A-chain and the C-peptide. By enhancing anticodon/codon cross-strand stacking, the ms2-modification adds stability through van der Waals interactions and dehydration of the ASL loop and cavity of the anticodon/codon minihelix but does not add hydrogen bonding of any consequence. Thus, the modifying enzyme Cdkal1, by adding a crucial ms2-group to tRNAUUULys3-t6A37, facilitates the decoding of the AAG codon and enables human pancreatic islets to correctly translate insulin mRNA.


Subject(s)
Diabetes Mellitus, Type 2 , Nucleosides , Anticodon/genetics , Chemistry, Physical , Codon/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Lysine/genetics , Nucleic Acid Conformation , RNA, Transfer/genetics , RNA, Transfer, Lys/chemistry , RNA, Transfer, Lys/genetics , Thermodynamics
15.
Genes (Basel) ; 13(3)2022 03 18.
Article in English | MEDLINE | ID: mdl-35328093

ABSTRACT

RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.


Subject(s)
Molecular Dynamics Simulation , RNA , Proteins , RNA/chemistry , RNA/genetics
16.
iScience ; 23(12): 101866, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33319183

ABSTRACT

Geranylation is a hydrophobic modification discovered in several bacteria tRNAs with the function of promoting codon bias during translation. However, why nature selects this C10-geranyl group remains a question. We conduct synthesis, UV-thermal denaturation, and molecular simulation studies in RNA duplexes and reveal possible reasons behind this natural selection. Among methyl-(C1), dimethylallyl-(C5), geranyl-(C10), and farnesyl-(C15) modified 2-thiouridines, only geranyl-group promotes U:G over U:A pair. Molecular simulation shows all the modified terpene groups point to the minor groove of RNA duplexes. The discrimination between U:G and U:A pairs derives from the difference in hydrogen bonding and interactions of the chain with the hydrophobic area in the minor groove. Geranyl group has perfect length to discriminate U:G and U:A pairs, whereas the others are either too long or too short to achieve the same behavior. This work indicates that geranyl group cannot be replaced by other terpene groups in promoting codon-specificity.

17.
mBio ; 11(4)2020 07 14.
Article in English | MEDLINE | ID: mdl-32665276

ABSTRACT

Inteins, as posttranslational regulatory elements, can tune protein function to environmental changes by conditional protein splicing (CPS). Translated as subdomains interrupting host proteins, inteins splice to scarlessly join flanking sequences (exteins). We used DnaB-intein1 (DnaBi1) from a replicative helicase of Mycobacterium smegmatis to build a kanamycin intein splicing reporter (KISR) that links splicing of DnaBi1 to kanamycin resistance. Using expression in heterologous Escherichia coli, we observed phenotypic classes of various levels of splicing-dependent resistance (SDR) and related these to the insertion position of DnaBi1 within the kanamycin resistance protein (KanR). The KanR-DnaBi1 construct demonstrating the most stringent SDR was used to probe for CPS of DnaB in the native host environment, M. smegmatis We show here that zinc, important during mycobacterial pathogenesis, inhibits DnaB splicing in M. smegmatis Using an in vitro reporter system, we demonstrated that zinc potently and reversibly inhibited DnaBi1 splicing, as well as splicing of a comparable intein from Mycobacterium leprae Finally, in a 1.95 Å crystal structure, we show that zinc inhibits splicing through binding to the very cysteine that initiates the splicing reaction. Together, our results provide compelling support for a model whereby mycobacterial DnaB protein splicing, and thus DNA replication, is responsive to environmental zinc.IMPORTANCE Inteins are present in a large fraction of prokaryotes and localize within conserved proteins, including the mycobacterial replicative helicase DnaB. In addition to their extensive protein engineering applications, inteins have emerged as environmentally responsive posttranslational regulators of the genes that encode them. While several studies have shown compelling evidence of conditional protein splicing (CPS), examination of splicing in the native host of the intein has proven to be challenging. Here, we demonstrated through a number of measures, including the use of a splicing-dependent sensor capable of monitoring intein activity in the native host, that zinc is a potent and reversible inhibitor of mycobacterial DnaB splicing. This work also expands our knowledge of site selection for intein insertion within nonnative proteins, demonstrating that splicing-dependent host protein activation correlates with proximity to the active site. Additionally, we surmise that splicing regulation by zinc has mycobacteriocidal and CPS application potential.


Subject(s)
DnaB Helicases/antagonists & inhibitors , Mycobacterium/drug effects , Protein Splicing/drug effects , Zinc/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , DnaB Helicases/chemistry , DnaB Helicases/genetics , Escherichia coli/genetics , Inteins/genetics , Mycobacterium/enzymology , Mycobacterium/genetics , Protein Processing, Post-Translational
18.
Front Mol Biosci ; 7: 584228, 2020.
Article in English | MEDLINE | ID: mdl-33634165

ABSTRACT

Human Genome Wide Association Studies found a significant risk of Type 2 Diabetes Mellitus (T2DM) in single nucleotide polymorphisms in the cdkal1 gene. The cdkal1 gene is remote from the insulin gene and with the surprising function of a specific tRNA modification. Population studies and case control studies acquired evidences of the connection between Cdkal1 protein and insulin production over the years. To obtain biochemical proofs directly linking potential SNPs to their roles in insulin production and availability is challenging, but the development of Cdkal1 knock out mice and knock out cell lines made it possible to extend our knowledge towards therapeutic field of diabetic research. Supporting the evidences, here we show that knock down of the cdkal1 gene using small interfering and short hairpin RNA in the NIT-1 cell line, a ß-cell line inducible for insulin resulted in reduced levels of cdkal1 and mature insulin mRNAs, increased the level of precursor insulin mRNA, decreased Cdkal1 and insulin proteins, and diminished modification of tRNALys3 from t6A37 to ms2t6A37, the specified function of Cdkal1. tRNALys3 lacking ms2- is incapable of establishing sufficient hydrogen bonding energy and hydrophobic stabilization to decode the wobble codon AAG.

19.
J Mol Biol ; 432(4): 913-929, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31945376

ABSTRACT

Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.


Subject(s)
Codon/genetics , Cytidine/analogs & derivatives , RNA, Transfer/metabolism , Computational Biology , Crystallography, X-Ray , Cytidine/metabolism , Inosine/metabolism , Nucleosides/metabolism , RNA/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Thermodynamics
20.
Nat Commun ; 10(1): 3401, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363086

ABSTRACT

Epitranscriptomic modifications of mRNA are important regulators of gene expression. While internal 2'-O-methylation (Nm) has been discovered on mRNA, questions remain about its origin and function in cells and organisms. Here, we show that internal Nm modification can be guided by small nucleolar RNAs (snoRNAs), and that these Nm sites can regulate mRNA and protein expression. Specifically, two box C/D snoRNAs (SNORDs) and the 2'-O-methyltransferase fibrillarin lead to Nm modification in the protein-coding region of peroxidasin (Pxdn). The presence of Nm modification increases Pxdn mRNA expression but inhibits its translation, regulating PXDN protein expression and enzyme activity both in vitro and in vivo. Our findings support a model in which snoRNA-guided Nm modifications of mRNA can regulate physiologic gene expression by altering mRNA levels and tuning protein translation.


Subject(s)
Extracellular Matrix Proteins/genetics , Peroxidase/genetics , RNA, Messenger/genetics , RNA, Small Nucleolar/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Humans , Methylation , Methyltransferases/metabolism , Peroxidase/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Small Nucleolar/metabolism , Peroxidasin
SELECTION OF CITATIONS
SEARCH DETAIL