Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Nanotechnology ; 35(4)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37816337

ABSTRACT

Highly oriented, single crystalline, quaternary alloy chalcogenide crystal, MoxW1-xS2ySe2(1-y), is synthesized using a high temperature chemical vapor transport technique and its transport properties studied over a wide temperature range. Field effect transistors (FET) with bottom gated configuration are fabricated using Mo0.5W0.5SSe flakes of different thicknesses, from a single layer to bulk. The FET characteristics are thickness tunable, with thin flakes (1-4 layers) exhibiting n-type transport behaviour while ambipolar transfer characteristics are observed for thicker flakes (>90 layers). Ambipolar behavior with the dominance of n-type over p-type transport is noted for devices fabricated with layers between 9 and 90. The devices with flake thickness ∼9 layers exhibit a maximum electron mobility 63 ± 4 cm2V-1s-1and anION/IOFFratio >108. A maximum hole mobility 10.3 ± 0.4 cm2V-1s-1is observed for the devices with flake thickness ∼94 layers withION/IOFFratio >102-103observed for the hole conduction. A maximumION/IOFFfor hole conduction, 104is obtained for the devices fabricated with flakes of thickness ∼7-19 layers. The electron Schottky barrier height values are determined to be ∼23.3 meV and ∼74 meV for 2 layer and 94 layers flakes respectively, as measured using low temperature measurements. This indicates that an increase in hole current with thickness is likely to be due to lowering of the band gap as a function of thickness. Furthermore, the contact resistance (Rct) is evaluated using transmission line model (TLM) and is found to be 14 kohm.µm. These results suggest that quaternary alloys of Mo0.5W0.5SSe are potential candidates for various electronic/optoelectronic devices where properties and performance can be tuned within a single composition.

2.
Chemistry ; 27(44): 11326-11334, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34019316

ABSTRACT

Solution processing of nanomaterials is a promising technique for use in various applications owing to its simplicity and scalability. However, the studies on liquid-phase exfoliation (LPE) of tungsten oxide (WO3 ) are limited, unlike others, by a lack of commercial availability of bulk WO3 with layered structures. Herein, a one-step topochemical synthesis approach to obtain bulk layered WO3 from commercially available layered tungsten disulfide (WS2 ) by optimizing various parameters like reaction time and temperature is reported. Detailed microscopic and spectroscopic techniques confirmed the conversion process. Further, LPE was carried out on topochemically converted bulk layered WO3 in 22 different solvents; among the solvents studied, the propan-2-ol/water (1 : 1) co-solvent system appeared to be the best. This indicates that the possible values of surface tension and Hansen solubility parameters for bulk WO3 could be close to that of the co-solvent system. The obtained WO3 dispersions in a low-boiling-point solvent enable thin films of various thickness to be fabricated by using spray coating. The obtained thin films were used as active materials in supercapacitors without any conductive additives/binders and exhibited an areal capacitance of 31.7 mF cm-2 at 5 mV s-1 . Photo-electrochemical measurements revealed that these thin films can also be used as photoanodes for photo-electrochemical water oxidation.

3.
Phys Chem Chem Phys ; 20(2): 1091-1097, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29238765

ABSTRACT

We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes. In particular, we discuss spin filtering through bacteriorhodopsin in a solid state biomolecular spin valve that is based on the chirality induced spin selectivity (CISS) effect and shows a magnetoresistance of ∼2% at room temperature. The device is fabricated using a layer of bacteriorhodopsin (treated with n-octyl-thioglucoside detergent: OTG-bR) that is adsorbed on a cysteamine functionalized gold electrode and capped with a magnesium oxide layer as a tunneling barrier, upon which a Ni top electrode film is placed and used as a spin analyzer. The bR based spin valves show an antisymmetric magnetoresistance response when a magnetic field is applied along the direction of the current flow, whereas they display a positive symmetric magnetoresistance curve when a magnetic field is applied perpendicular to the current direction.


Subject(s)
Bacteriorhodopsins/chemistry , Magnets , Electrodes , Electrons , Gold , Magnetic Fields , Thioglucosides
4.
J Am Chem Soc ; 139(7): 2794-2798, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28132505

ABSTRACT

The production of hydrogen through water splitting in a photoelectrochemical cell suffers from an overpotential that limits the efficiencies. In addition, hydrogen-peroxide formation is identified as a competing process affecting the oxidative stability of photoelectrodes. We impose spin-selectivity by coating the anode with chiral organic semiconductors from helically aggregated dyes as sensitizers; Zn-porphyrins and triarylamines. Hydrogen peroxide formation is dramatically suppressed, while the overall current through the cell, correlating with the water splitting process, is enhanced. Evidence for a strong spin-selection in the chiral semiconductors is presented by magnetic conducting (mc-)AFM measurements, in which chiral and achiral Zn-porphyrins are compared. These findings contribute to our understanding of the underlying mechanism of spin selectivity in multiple electron-transfer reactions and pave the way toward better chiral dye-sensitized photoelectrochemical cells.

5.
J Phys Chem A ; 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28650163

ABSTRACT

Efficient photoelectrochemical production of hydrogen from water is the aim of many studies in recent decades. Typically, one observes that the electric potential required to initiate the process significantly exceeds the thermodynamic limit. It was suggested that by controlling the spins of the electrons that are transferred from the solution to the anode, and ensuring that they are co-aligned, the threshold voltage for the process can be decreased to that of the thermodynamic voltage. In the present study, by using anodes coated with chiral conductive polymer, the hydrogen production from water is enhanced and the threshold voltage is reduced, as compared with anodes coated with achiral polymer. When CdSe quantum dots were embedded within the polymer, the current density was doubled. These new results point to a possible new direction for producing inexpensive, environmental friendly, efficient water splitting photoelectrochemical cells.

6.
Angew Chem Int Ed Engl ; 56(46): 14587-14590, 2017 11 13.
Article in English | MEDLINE | ID: mdl-28960865

ABSTRACT

Electron spin states play an important role in many chemical processes. Most spin-state studies require the application of a magnetic field. Recently it was found that the transport of electrons through chiral molecules also depends on their spin states and may also play a role in enantiorecognition. Electrochemistry is an important tool for studying spin-specific processes and enantioseparation of chiral molecules. A new device is presented, which serves as the working electrode in electrochemical cells and is capable of providing information on the correlation of spin selectivity and the electrochemical process. The device is based on the Hall effect and it eliminates the need to apply an external magnetic field. Spin-selective electron transfer through chiral molecules can be monitored and the relationship between the enantiorecognition process and the spin of electrons elucidated.

7.
Chem Commun (Camb) ; 60(56): 7208-7211, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38910534

ABSTRACT

In this work, the direct use of transparent conducting oxides (TCOs) as cost-efficient anodes for the iodide oxidation reaction (IOR) is explored. Energy-saving hydrogen production assisted by the IOR is demonstrated using a hybrid water electrolysis system with FTO as the anode and Pt-wire as the cathode. The hybrid system delivers 10 mA cm-2 at a cell voltage as low as 1.15 V with the faradaic efficiency for H2 found to be ∼91%. This study may open avenues for developing novel systems that integrate the IOR with other high-value reduction reactions.

8.
Chem Commun (Camb) ; 60(31): 4174-4177, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38390953

ABSTRACT

Hybrid water electrolysis (HyWES) with iodide oxidation as non-OER for energy-saving H2 production is demonstrated using self-supported sulfate ion modified Ni,Fe(oxy)hydroxide as the anode. The sulfate ions adsorbed on the catalyst show a promoting effect in achieving high electrochemical activity. The HyWES requires a voltage as low as 1.36 V to achieve the bechmark current density of 10 mA cm-2.

9.
ACS Catal ; 13(13): 9113-9124, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37441235

ABSTRACT

The stoichiometric water splitting using a solar-driven Z-scheme approach is an emerging field of interest to address the increasing renewable energy demand and environmental concerns. So far, the reported Z-scheme must comprise two populations of photocatalysts. In the present work, only tungsten oxides are used to construct a robust Z-scheme system for complete visible-driven water splitting in both neutral and alkaline solutions, where sodium tungsten oxide bronze (Na0.56WO3-x) is used as a H2 evolution photocatalyst and two-dimensional (2D) tungsten trioxide (WO3) nanosheets as an O2 evolution photocatalyst. This system efficiently produces H2 (14 µmol h-1) and O2 (6.9 µmol h-1) at an ideal molar ratio of 2:1 in an aqueous solution driven by light, resulting in a remarkably high apparent quantum yield of 6.06% at 420 nm under neutral conditions. This exceptional selective H2 and O2 production is due to the preferential adsorption of iodide (I-) on Na0.56WO3-x and iodate (IO3-) on WO3, which is evidenced by both experiments and density functional theory calculation. The present liquid Z-scheme in the presence of efficient shuttle molecules promises a separated H2 and O2 evolution by applying a dual-bed particle suspension system, thus a safe photochemical process.

10.
Nat Commun ; 8: 14567, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230054

ABSTRACT

Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm-2, or about 1 × 1025 electrons s-1 cm-2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL