Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Haematologica ; 109(6): 1893-1908, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38124661

ABSTRACT

REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3'UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy.


Subject(s)
Chromosomes, Human, Pair 14 , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Multiple Myeloma , Translocation, Genetic , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Mice , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 4/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Phenotype , Inflammation/genetics , Inflammation/metabolism , Histones/metabolism , Repressor Proteins
2.
Genes Dev ; 27(17): 1903-16, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24013503

ABSTRACT

The tight control of gene expression at the level of both transcription and post-transcriptional RNA processing is essential for mammalian development. We here investigate the role of protein arginine methyltransferase 5 (PRMT5), a putative splicing regulator and transcriptional cofactor, in mammalian development. We demonstrate that selective deletion of PRMT5 in neural stem/progenitor cells (NPCs) leads to postnatal death in mice. At the molecular level, the absence of PRMT5 results in reduced methylation of Sm proteins, aberrant constitutive splicing, and the alternative splicing of specific mRNAs with weak 5' donor sites. Intriguingly, the products of these mRNAs are, among others, several proteins regulating cell cycle progression. We identify Mdm4 as one of these key mRNAs that senses the defects in the spliceosomal machinery and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in vivo. Our data demonstrate that PRMT5 is a master regulator of splicing in mammals and uncover a new role for the Mdm4 pre-mRNA, which could be exploited for anti-cancer therapy.


Subject(s)
Alternative Splicing/genetics , Protein Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/genetics , Spliceosomes/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Central Nervous System/pathology , Genes, p53/genetics , HCT116 Cells , HEK293 Cells , Homeostasis/genetics , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Kaplan-Meier Estimate , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin , Protein Binding , Protein Methyltransferases/deficiency , Protein Methyltransferases/genetics , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins/genetics , RNA Precursors/genetics , Signal Transduction , Spliceosomes/genetics , Spliceosomes/metabolism , Ubiquitin-Protein Ligases/genetics
3.
Genes Dev ; 26(5): 461-73, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22391449

ABSTRACT

The gene expression networks governing embryonic stem cell (ESC) pluripotency are complex and finely regulated during differentiation toward specific lineages. We describe a new role for Amd1 (adenosyl methionine decarboxylase), a key enzyme in the polyamine synthesis pathway, in regulating both ESC self-renewal and differentiation to the neural lineage. Amd1 is highly expressed in ESCs and is translationally down-regulated by the neural precursor cell (NPC)-enriched microRNA miR-762 during NPC differentiation. Overexpression of Amd1 or addition of the polyamine spermine blocks ESC-to-NPC conversion, suggesting Amd1 must be down-regulated to decrease the levels of inhibitory spermine during differentiation. In addition, we demonstrate that high levels of Amd1 are required for maintenance of the ESC state. We show that forced overexpression of Amd1 in ESCs results in maintenance of high Myc levels and a delay in differentiation on removal of LIF. We propose that Amd1 is a major regulator of ESC self-renewal and that its essential role lies in its regulation of Myc levels within the cell.


Subject(s)
Adenosylmethionine Decarboxylase/genetics , Adenosylmethionine Decarboxylase/metabolism , Cell Differentiation/genetics , Down-Regulation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Animals , Gene Expression Regulation, Developmental , Mice , MicroRNAs/metabolism , Neurons/cytology , Neurons/enzymology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
4.
Stem Cells ; 36(8): 1170-1178, 2018 08.
Article in English | MEDLINE | ID: mdl-29644784

ABSTRACT

Embryonic stem cells have the ability to self-renew or differentiate and these processes are under tight control. We previously reported that the polyamine regulator AMD1 is critical for embryonic stem cell self-renewal. The polyamines putrescine, spermidine, and spermine are essential organic cations that play a role in a wide array of cellular processes. Here, we explore the essential role of the polyamines in the promotion of self-renewal and identify a new stem cell regulator that acts downstream of the polyamines: MINDY1. MINDY1 protein levels are high in embryonic stem cells (ESCs) and are dependent on high polyamine levels. Overexpression of MINDY1 can promote ESC self-renewal in the absence of the usually essential cytokine Leukemia Inhibitory Factor (LIF). MINDY1 protein is prenylated and this modification is required for its ability to promote self-renewal. We go on to show that Mindy1 RNA is targeted for repression by mir-710 during Neural Precursor cell differentiation. Taken together, these data demonstrate that high polyamine levels are required for ESC self-renewal and that they function, in part, through promotion of high MINDY1 levels. Stem Cells 2018;36:1170-1178.


Subject(s)
Cell Self Renewal , Deubiquitinating Enzymes/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Polyamines/metabolism , Animals , Base Sequence , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Self Renewal/drug effects , Eflornithine/pharmacology , Embryonic Stem Cells/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Protein Transport/drug effects
5.
RNA ; 22(6): 867-82, 2016 06.
Article in English | MEDLINE | ID: mdl-27090285

ABSTRACT

Recent footprinting studies have made the surprising observation that long noncoding RNAs (lncRNAs) physically interact with ribosomes. However, these findings remain controversial, and the overall proportion of cytoplasmic lncRNAs involved is unknown. Here we make a global, absolute estimate of the cytoplasmic and ribosome-associated population of stringently filtered lncRNAs in a human cell line using polysome profiling coupled to spike-in normalized microarray analysis. Fifty-four percent of expressed lncRNAs are detected in the cytoplasm. The majority of these (70%) have >50% of their cytoplasmic copies associated with polysomal fractions. These interactions are lost upon disruption of ribosomes by puromycin. Polysomal lncRNAs are distinguished by a number of 5' mRNA-like features, including capping and 5'UTR length. On the other hand, nonpolysomal "free cytoplasmic" lncRNAs have more conserved promoters and a wider range of expression across cell types. Exons of polysomal lncRNAs are depleted of endogenous retroviral insertions, suggesting a role for repetitive elements in lncRNA localization. Finally, we show that blocking of ribosomal elongation results in stabilization of many associated lncRNAs. Together these findings suggest that the ribosome is the default destination for the majority of cytoplasmic long noncoding RNAs and may play a role in their degradation.


Subject(s)
Cytoplasm/metabolism , RNA, Long Noncoding/metabolism , Ribosomes/metabolism , 5' Untranslated Regions , Binding Sites , HeLa Cells , Humans , Hydrolysis , In Situ Hybridization, Fluorescence , K562 Cells
6.
J Mol Cell Cardiol ; 112: 27-39, 2017 11.
Article in English | MEDLINE | ID: mdl-28865712

ABSTRACT

RATIONALE: Myocardial infarction (MI) triggers a dynamic microRNA response with the potential of yielding therapeutic targets. OBJECTIVE: We aimed to identify novel aberrantly expressed cardiac microRNAs post-MI with potential roles in adverse remodeling in a rat model, and to provide post-ischemic therapeutic inhibition of a candidate pathological microRNA in vivo. METHODS AND RESULTS: Following microRNA array profiling in rat hearts 2 and 14days post-MI, we identified a time-dependent up-regulation of miR-31 compared to sham-operated rats. A progressive increase of miR-31 (up to 91.4Ā±11.3 fold) was detected in the infarcted myocardium by quantitative real-time PCR. Following target prediction analysis, reporter gene assays confirmed that miR-31 targets the 3Ā“UTR of cardiac troponin-T (Tnnt2), E2F transcription factor 6 (E2f6), mineralocorticoid receptor (Nr3c2) and metalloproteinase inhibitor 4 (Timp4) mRNAs. In vitro, hypoxia and oxidative stress up-regulated miR-31 and suppressed target genes in cardiac cell cultures, whereas LNA-based oligonucleotide inhibition of miR-31 (miR-31i) reversed its repressive effect on target mRNAs. Therapeutic post-ischemic administration of miR-31i in rats silenced cardiac miR-31 and enhanced expression of target genes, while preserving cardiac structure and function at 2 and 4weeks post-MI. Left ventricular ejection fraction (EF) improved by 10% (from day 2 to 30 post-MI) in miR-31i-treated rats, whereas controls receiving scrambled LNA inhibitor or placebo incurred a 17% deterioration in EF. miR-31i decreased end-diastolic pressure and infarct size; attenuated interstitial fibrosis in the remote myocardium and enhanced cardiac output. CONCLUSION: miR-31 induction after MI is deleterious to cardiac function while its therapeutic inhibition in vivo ameliorates cardiac dysfunction and prevents the development of post-ischemic adverse remodeling.


Subject(s)
MicroRNAs/metabolism , Myocardial Ischemia/genetics , Ventricular Remodeling/genetics , Animals , Base Sequence , Cell Hypoxia/genetics , Cell Line , Gene Expression Profiling , Gene Silencing/drug effects , Male , Myocardial Ischemia/pathology , Myocardium/metabolism , Oligonucleotides/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Rats , Up-Regulation/drug effects , Up-Regulation/genetics , Ventricular Remodeling/drug effects
7.
J Mol Cell Cardiol ; 82: 13-21, 2015 May.
Article in English | MEDLINE | ID: mdl-25736855

ABSTRACT

Natriuretic peptide receptor 3 (NPR3) is the clearance receptor for the cardiac natriuretic peptides (NPs). By modulating the level of NPs, NPR3 plays an important role in cardiovascular homeostasis. Although the physiological functions of NPR3 have been explored, little is known about its regulation in health or disease. MicroRNAs play an essential role in the post-transcriptional expression of many genes. Our aim was to investigate potential microRNA-based regulation of NPR3 in multiple models. Hypoxic challenge elevated levels of NPPB and ADM mRNA, as well as NT-proBNP and MR-proADM in human left ventricle derived cardiac cells (HCMa), and in the corresponding conditioned medium, as revealed by qRT-PCR and ELISA. NPR3 was decreased while NPR1 was increased by hypoxia at mRNA and protein levels in HCMa. Down-regulation of NPR3 mRNA was also observed in infarct and peri-infarct cardiac tissue from rats undergoing myocardial infarction. From microRNA microarray analyses and microRNA target predictive databases, miR-100 was selected as a candidate regulator of NPR3 expression. Further analyses confirmed up-regulation of miR-100 in hypoxic cells and associated conditioned media. Antagomir-based silencing of miR-100 enhanced NPR3 expression in HCMa. Furthermore, miR-100 levels were markedly up-regulated in rat hearts and in peripheral blood after myocardial infarction and in the blood from heart failure patients. Results from this study point to a role for miR-100 in the regulation of NPR3 expression, and suggest a possible therapeutic target for modulation of NP bioactivity in heart disease.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Receptors, Atrial Natriuretic Factor/genetics , 3' Untranslated Regions , Adrenomedullin/genetics , Adrenomedullin/metabolism , Aged , Animals , Base Sequence , Binding Sites , Case-Control Studies , Culture Media, Conditioned/metabolism , Disease Models, Animal , Down-Regulation , Female , Gene Expression Profiling , Heart Failure/blood , Heart Failure/genetics , Heart Failure/metabolism , Humans , Hypoxia/genetics , Hypoxia/metabolism , Male , MicroRNAs/chemistry , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/metabolism , Protein Precursors/metabolism , RNA Interference , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/metabolism , Time Factors
8.
Biochim Biophys Acta ; 1843(2): 436-45, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24269842

ABSTRACT

Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27(Kip1), which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Skp2(-/-) mouse embryonic fibroblasts, encouraging us to generate Cdk2(-/-)Skp2(-/-) double knockout mice. Cdk2(-/-)Skp2(-/-) double knockout mice are viable and display similar phenotypes as Cdk2(-/-) and Skp2(-/-) mice. Unexpectedly, fibroblasts generated from Cdk2(-/-)Skp2(-/-) double knockout mice proliferated at normal rates. The increased stability of p27 observed in Skp2(-/-) MEFs was not observed in Cdk2(-/-)Skp2(-/-) double knockout fibroblasts indicating that in the absence of Cdk2, p27 is regulated by Skp2-independent mechanisms. Ablation of other ubiquitin ligases for p27 such as KPC1, DDB1, and Pirh2 did not restore stability of p27 in Cdk2(-/-)Skp2(-/-) MEFs. Our findings point towards novel and alternate pathways for p27 regulation.


Subject(s)
Cyclin-Dependent Kinase 2/deficiency , Cyclin-Dependent Kinase Inhibitor p27/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Animals , Antigens, Polyomavirus Transforming/metabolism , Body Size , Cell Proliferation , Crosses, Genetic , Cyclin-Dependent Kinase 2/metabolism , Embryo, Mammalian/cytology , Female , Fibroblasts/cytology , Fibroblasts/enzymology , Gene Silencing , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Size , Protein Stability , Ubiquitin-Protein Ligases/metabolism
9.
Genome Res ; 21(5): 676-87, 2011 May.
Article in English | MEDLINE | ID: mdl-21467264

ABSTRACT

Using a long-span, paired-end deep sequencing strategy, we have comprehensively identified cancer genome rearrangements in eight breast cancer genomes. Herein, we show that 40%-54% of these structural genomic rearrangements result in different forms of fusion transcripts and that 44% are potentially translated. We find that single segmental tandem duplication spanning several genes is a major source of the fusion gene transcripts in both cell lines and primary tumors involving adjacent genes placed in the reverse-order position by the duplication event. Certain other structural mutations, however, tend to attenuate gene expression. From these candidate gene fusions, we have found a fusion transcript (RPS6KB1-VMP1) recurrently expressed in Ć¢ĀˆĀ¼30% of breast cancers associated with potential clinical consequences. This gene fusion is caused by tandem duplication on 17q23 and appears to be an indicator of local genomic instability altering the expression of oncogenic components such as MIR21 and RPS6KB1.


Subject(s)
Breast Neoplasms/metabolism , Gene Rearrangement , Genome, Human/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Transcription, Genetic , Breast Neoplasms/genetics , Cell Line, Tumor , Chromosome Mapping , Chromosomes, Human, Pair 17/genetics , Female , Gene Dosage , Gene Expression Profiling , Genomic Instability , High-Throughput Nucleotide Sequencing , Humans , Recombinant Fusion Proteins/genetics , Ribosomal Protein S6 Kinases/genetics , Sequence Analysis, DNA
10.
RNA ; 18(5): 1091-100, 2012 May.
Article in English | MEDLINE | ID: mdl-22417692

ABSTRACT

MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.


Subject(s)
Genes, Reporter , MicroRNAs/metabolism , 3' Untranslated Regions , Animals , Argonaute Proteins/metabolism , Base Sequence , Cell Line , Gene Expression , Gene Order , Genetic Vectors , Humans , Luciferases/genetics , Luciferases/metabolism , Mice , Molecular Sequence Data , Poly A/chemistry , Protein Biosynthesis , RNA, Messenger/metabolism , Retroviridae/genetics
11.
RNA Biol ; 11(1): 33-41, 2014.
Article in English | MEDLINE | ID: mdl-24452241

ABSTRACT

Ribosomal proteins (RPs) have been shown to be able to impart selectivity on the translating ribosome implicating them in gene expression control. Many ribosomal proteins are highly conserved and recently a number of ribosomal protein paralogs have been described in mammals. We examined the expression pattern of RPs in differentiating mouse Embryonic Stem Cells (ESCs), paying particular attention to the RP paralogs. We find the RP paralog Rpl39l is highly expressed in ESC and its expression strongly correlates with hepatocellular carcinoma tumor (HCC) samples with high tumor grading and alpha-fetoprotein level giving it diagnostic potential. We further screen the expression pattern of all RPs and their paralogs across 22 different tissues. We find that the more recently evolved RP paralogs show a much greater level of tissue-specific expression. We propose that these RP paralogs evolved more recently to provide a greater level of gene expression control to higher eukaryotes.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Embryonic Stem Cells/metabolism , Liver Neoplasms/metabolism , Ribosomal Proteins/metabolism , alpha-Fetoproteins/metabolism , Aged , Animals , Carcinoma, Hepatocellular/pathology , Cell Line , Conserved Sequence , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Neoplasm Grading , Organ Specificity , Phylogeny , Ribosomal Proteins/genetics
12.
Exp Dermatol ; 22(11): 697-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24433178

ABSTRACT

Polyamines are cationic amines essential for cellular proliferation. Recently, their role in hair follicle (HF) growth has started to be explored, but their exact function is still obscure. In the October issue of Experimental Dermatology, Luke etĀ al. follow the observation that putrescine overproducing mice and hairless (HR) mutant mice show a similar clinical phenotype of hair loss and dermal cyst formation. They show that HR and putrescine form a negative regulatory feedback mechanism, which might regulate hair cycling and therefore control hair growth. This study clearly demonstrates that a strong connection exists between HR and polyamines although there are probably additional molecular pathways involved in the polyamine regulation of hair growth which remain to be discovered.


Subject(s)
Epidermis/metabolism , Gene Expression Regulation , Putrescine/metabolism , Transcription Factors/physiology , Animals
13.
Elife ; 112022 07 14.
Article in English | MEDLINE | ID: mdl-35834310

ABSTRACT

The hallmark event of the canonical transforming growth factor Ɵ (TGFƟ) family signaling is the assembly of the Smad-complex, consisting of the common Smad, Smad4, and phosphorylated receptor-regulated Smads. How the Smad-complex is assembled and regulated is still unclear. Here, we report that active Arl15, an Arf-like small G protein, specifically binds to the MH2 domain of Smad4 and colocalizes with Smad4 at the endolysosome. The binding relieves the autoinhibition of Smad4, which is imposed by the intramolecular interaction between its MH1 and MH2 domains. Activated Smad4 subsequently interacts with phosphorylated receptor-regulated Smads, forming the Smad-complex. Our observations suggest that Smad4 functions as an effector and a GTPase activating protein (GAP) of Arl15. Assembly of the Smad-complex enhances the GAP activity of Smad4 toward Arl15, therefore dissociating Arl15 before the nuclear translocation of the Smad-complex. Our data further demonstrate that Arl15 positively regulates the TGFƟ family signaling.


Subject(s)
Trans-Activators , Transforming Growth Factor beta , Signal Transduction , Smad3 Protein/metabolism , Smad4 Protein/metabolism , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism
14.
J Invest Dermatol ; 142(4): 1206-1216.e8, 2022 04.
Article in English | MEDLINE | ID: mdl-34710388

ABSTRACT

Nonhealing wounds are a major area of unmet clinical need remaining problematic to treat. Improved understanding of prohealing mechanisms is invaluable. The enzyme arginase1 (ARG1) is involved in prohealing responses, with its role in macrophages best characterized. ARG1 is also expressed by keratinocytes; however, ARG1 function in these critical wound repair cells is not understood. We characterized ARG1 expression in keratinocytes during normal cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound edge. Interestingly, epidermal ARG1 expression was decreased in both human and murine delayed healing wounds. We therefore generated a keratinocyte-specific ARG1-null mouse model (K14-cre;Arg1fl/fl) to explore arginase function. Wound repair, linked to changes in keratinocyte proliferation, migration, and differentiation, was significantly delayed in K14-cre;Arg1fl/fl mice. Similarly, using the arginase inhibitor N(omega)-hydroxy-nor-L-arginine, human in vitro and ex vivo models further confirmed this finding, revealing the importance of the downstream polyamine pathway in repair. Indeed, restoring the balance in ARG1 activity through the addition of putrescine proved beneficial in wound closure. In summary, we show that epidermal ARG1 plays, to our knowledge, a previously unreported intrinsic role in cutaneous healing, highlighting epidermal ARG1 and the downstream mediators as potential targets for the therapeutic modulation of wound repair.


Subject(s)
Arginase , Skin Abnormalities , Animals , Arginase/genetics , Arginase/metabolism , Epidermis/metabolism , Keratinocytes/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , Skin/metabolism , Skin Abnormalities/metabolism
15.
Nat Cell Biol ; 24(6): 928-939, 2022 06.
Article in English | MEDLINE | ID: mdl-35618746

ABSTRACT

Most mammalian genes generate messenger RNAs with variable untranslated regions (UTRs) that are important post-transcriptional regulators. In cancer, shortening at 3' UTR ends via alternative polyadenylation can activate oncogenes. However, internal 3' UTR splicing remains poorly understood as splicing studies have traditionally focused on protein-coding alterations. Here we systematically map the pan-cancer landscape of 3' UTR splicing and present this in SpUR ( http://www.cbrc.kaust.edu.sa/spur/home/ ). 3' UTR splicing is widespread, upregulated in cancers, correlated with poor prognosis and more prevalent in oncogenes. We show that antisense oligonucleotide-mediated inhibition of 3' UTR splicing efficiently reduces oncogene expression and impedes tumour progression. Notably, CTNNB1 3' UTR splicing is the most consistently dysregulated event across cancers. We validate its upregulation in hepatocellular carcinoma and colon adenocarcinoma, and show that the spliced 3' UTR variant is the predominant contributor to its oncogenic functions. Overall, our study highlights the importance of 3' UTR splicing in cancer and may launch new avenues for RNA-based anti-cancer therapeutics.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , 3' Untranslated Regions/genetics , Adenocarcinoma/genetics , Alternative Splicing/genetics , Animals , Carcinogenesis/genetics , Colonic Neoplasms/genetics , Mammals , Up-Regulation
16.
Front Mol Biosci ; 8: 773866, 2021.
Article in English | MEDLINE | ID: mdl-34778380

ABSTRACT

Arginase (ARG) represents an important evolutionarily conserved enzyme that is expressed by multiple cell types in the skin. Arg acts as the mediator of the last step of the urea cycle, thus providing protection against excessive ammonia under homeostatic conditions through the production of L-ornithine and urea. L-ornithine represents the intersection point between the ARG-dependent pathways and the urea cycle, therefore contributing to cell detoxification, proliferation and collagen production. The ARG pathways help balance pro- and anti-inflammatory responses in the context of wound healing. However, local and systemic dysfunctionalities of the ARG pathways have been shown to contribute to the hindrance of the healing process and the occurrence of chronic wounds. This review discusses the functions of ARG in macrophages and fibroblasts while detailing the deleterious implications of a malfunctioning ARG enzyme in chronic skin conditions such as leg ulcers. The review also highlights how ARG links with the microbiota and how this impacts on infected chronic wounds. Lastly, the review depicts chronic wound treatments targeting the ARG pathway, alongside future diagnosis and treatment perspectives.

17.
Nat Biotechnol ; 39(3): 336-346, 2021 03.
Article in English | MEDLINE | ID: mdl-33106685

ABSTRACT

Current methods for determining RNA structure with short-read sequencing cannot capture most differences between distinct transcript isoforms. Here we present RNA structure analysis using nanopore sequencing (PORE-cupine), which combines structure probing using chemical modifications with direct long-read RNA sequencing and machine learning to detect secondary structures in cellular RNAs. PORE-cupine also captures global structural features, such as RNA-binding-protein binding sites and reactivity differences at single-nucleotide variants. We show that shared sequences in different transcript isoforms of the same gene can fold into different structures, highlighting the importance of long-read sequencing for obtaining phase information. We also demonstrate that structural differences between transcript isoforms of the same gene lead to differences in translation efficiency. By revealing isoform-specific RNA structure, PORE-cupine will deepen understanding of the role of structures in controlling gene regulation.


Subject(s)
Nanopore Sequencing/methods , Nucleic Acid Conformation , RNA/chemistry , Sequence Analysis, RNA/methods , Human Embryonic Stem Cells/metabolism , Humans , Isomerism , RNA/genetics , Tetrahymena/genetics , Transcriptome
18.
J Invest Dermatol ; 141(9): 2178-2188.e6, 2021 09.
Article in English | MEDLINE | ID: mdl-33984347

ABSTRACT

Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.


Subject(s)
Adenosylmethionine Decarboxylase/metabolism , Epidermal Cells/metabolism , Spermine/metabolism , Adenosylmethionine Decarboxylase/genetics , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Epidermal Cells/pathology , Gene Knockdown Techniques , Humans , Kruppel-Like Factor 4/metabolism , Mice , Polyamines/metabolism , Signal Transduction , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Up-Regulation
19.
Methods Mol Biol ; 2109: 55-65, 2020.
Article in English | MEDLINE | ID: mdl-31161578

ABSTRACT

The study of skin pigmentation requires determining the rate of melanin production in melanocytes and quantifying the rate of melanosome transfer to keratinocytes. Here, we describe a method to quantify melanosome transfer using immunofluorescence microscopy coupled with automated image analysis of in vitro human melanocytes and keratinocytes in co-culture. In this method, the number of melanin capped keratinocyte nuclei is quantified.


Subject(s)
Keratinocytes/cytology , Melanocytes/cytology , Melanosomes/transplantation , Cells, Cultured , Coculture Techniques , Humans , Keratinocytes/metabolism , Melanins/metabolism , Melanocytes/metabolism , Melanosomes/metabolism , Microscopy, Fluorescence , Radiographic Image Interpretation, Computer-Assisted
20.
J Invest Dermatol ; 140(10): 2032-2040.e1, 2020 10.
Article in English | MEDLINE | ID: mdl-32119868

ABSTRACT

Hyperpigmentary conditions can arise when melanogenesis in the epidermis is misregulated. Understanding the pathways underlying melanogenesis is essential for the development of effective treatments. Here, we report that a group of metabolites called polyamines are important in the control of melanogenesis in human skin. Polyamines are cationic molecules present in all cells and are essential for cellular function. We report that polyamine regulator ODC1 is upregulated in melanocytes from melasma lesional skin. We report that the polyamine putrescine can promote pigmentation in human skin explants and primary normal human epidermal melanocytes through induction of tyrosinase which is rate-limiting for the synthesis of melanin. Putrescine supplementation on normal human epidermal melanocytes results in the activation of polyamine catabolism, which results in increased intracellular H2O2. Polyamine catabolism is also increased in human skin explants that have been treated with putrescine. We further report that inhibition of polyamine catabolism prevents putrescine-induced promotion of tyrosinase levels and pigmentation in normal human epidermal melanocytes, showing that polyamine catabolism is responsible for the putrescine induction of melanogenesis. Our data showing that putrescine promotes pigmentation has important consequences for hyperpigmented and hypopigmented conditions. Further understanding of how polyamines control epidermal pigmentation could open the door for the development of new therapeutics.


Subject(s)
Epidermis/drug effects , Melanins/biosynthesis , Putrescine/pharmacology , Biogenic Polyamines/metabolism , Cells, Cultured , Dicarboxylic Acid Transporters/physiology , Epidermis/metabolism , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Middle Aged , Mitochondrial Membrane Transport Proteins/physiology , Putrescine/analogs & derivatives , Skin Pigmentation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL