Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358469

ABSTRACT

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Proteogenomics , Acetylation , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Ubiquitination
2.
Nat Immunol ; 24(11): 1947-1959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37845489

ABSTRACT

Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.


Subject(s)
T-Lymphocyte Subsets , Transcriptome , Child , Humans , Aged , Aging/genetics , Epitopes/metabolism , Single-Cell Analysis
3.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649874

ABSTRACT

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proteogenomics , Adenocarcinoma of Lung/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/immunology , Male , Middle Aged , Mutation/genetics , Oncogene Proteins, Fusion , Phenotype , Phosphoproteins/metabolism , Proteome/metabolism
4.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059776

ABSTRACT

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Proteome/genetics , Transcriptome , Acetylation , Animals , Antigens, Neoplasm/genetics , Carcinoma/immunology , Carcinoma/pathology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Female , Genomic Instability , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microsatellite Repeats , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
5.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
6.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675502

ABSTRACT

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Subject(s)
Carcinoma, Renal Cell/genetics , Neoplasm Proteins/genetics , Proteogenomics , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Disease-Free Survival , Exome/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Humans , Male , Middle Aged , Neoplasm Proteins/immunology , Oxidative Phosphorylation , Phosphorylation/genetics , Signal Transduction/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Exome Sequencing
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941680

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) plays a critical role during normal development and in cancer progression. EMT is induced by various signaling pathways, including TGF-ß, BMP, Wnt-ß-catenin, NOTCH, Shh, and receptor tyrosine kinases. In this study, we performed single-cell RNA sequencing on MCF10A cells undergoing EMT by TGF-ß1 stimulation. Our comprehensive analysis revealed that cells progress through EMT at different paces. Using pseudotime clustering reconstruction of gene-expression profiles during EMT, we found sequential and parallel activation of EMT signaling pathways. We also observed various transitional cellular states during EMT. We identified regulatory signaling nodes that drive EMT with the expression of important microRNAs and transcription factors. Using a random circuit perturbation methodology, we demonstrate that the NOTCH signaling pathway acts as a key driver of TGF-ß-induced EMT. Furthermore, we demonstrate that the gene signatures of pseudotime clusters corresponding to the intermediate hybrid EMT state are associated with poor patient outcome. Overall, this study provides insight into context-specific drivers of cancer progression and highlights the complexities of the EMT process.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Gene Regulatory Networks , RNA-Seq/methods , Signal Transduction/genetics , Single-Cell Analysis/methods , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Humans , Kaplan-Meier Estimate , MicroRNAs/genetics , Neoplasms/classification , Neoplasms/genetics , Prognosis , Proportional Hazards Models , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
10.
FASEB J ; 35(7): e21719, 2021 07.
Article in English | MEDLINE | ID: mdl-34110646

ABSTRACT

While G protein-coupled receptors (GPCRs) are known to be excellent drug targets, the second largest family of adhesion-GPCRs is less explored for their role in health and disease. ADGRF1 (GPR110) is an adhesion-GPCR and has an important function in neurodevelopment and cancer. Despite serving as a poor predictor of survival, ADGRF1's coupling to G proteins and downstream pathways remain unknown in cancer. We evaluated the effects of ADGRF1 overexpression on tumorigenesis and signaling pathways using two human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC) cell-line models. We also interrogated publicly available clinical datasets to determine the expression of ADGRF1 in various BC subtypes and its impact on BC-specific survival (BCSS) and overall survival (OS) in patients. ADGRF1 overexpression in HER2+ BC cells increased secondary mammosphere formation, soft agar colony formation, and % of Aldefluor-positive tumorigenic population in vitro and promoted tumor growth in vivo. ADGRF1 co-immunoprecipitated with both Gαs and Gαq proteins and increased cAMP and IP1 when overexpressed. However, inhibition of only the Gαs pathway by SQ22536 reversed the pro-tumorigenic effects of ADGRF1 overexpression. RNA-sequencing and RPPA analysis revealed inhibition of cell cycle pathways with ADGRF1 overexpression, suggesting cellular quiescence, as also evidenced by cell cycle arrest at the G0/1 phase and resistance to chemotherapy in HER2+ BC. ADGRF1 was significantly overexpressed in the HER2-enriched BC compared to luminal A and B subtypes and predicted worse BCSS and OS in these patients. Therefore, ADGRF1 represents a novel drug target in HER2+ BC, warranting discovery of novel ADGRF1 antagonists.


Subject(s)
Drug Resistance, Neoplasm/genetics , Oncogene Proteins/genetics , Receptor, ErbB-2/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Breast Neoplasms/genetics , Carcinogenesis/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , G1 Phase/genetics , Humans , Mice , Mice, Nude , Resting Phase, Cell Cycle/genetics , Signal Transduction/genetics
11.
Br J Cancer ; 124(1): 259-269, 2021 01.
Article in English | MEDLINE | ID: mdl-33299129

ABSTRACT

BACKGROUND: The epithelial-mesenchymal transition (EMT) enables dissociation of tumour cells from the primary tumour mass, invasion through the extracellular matrix, intravasation into blood vessels and colonisation of distant organs. Cells that revert to the epithelial state via the mesenchymal-epithelial transition cause metastases, the primary cause of death in cancer patients. EMT also empowers cancer cells with stem-cell properties and induces resistance to chemotherapeutic drugs. Understanding the driving factors of EMT is critical for the development of effective therapeutic interventions. METHODS: This manuscript describes the generation of a database containing EMT gene signatures derived from cell lines, patient-derived xenografts and patient studies across cancer types and multiomics data and the creation of a web-based portal to provide a comprehensive analysis resource. RESULTS: EMTome incorporates (i) EMT gene signatures; (ii) EMT-related genes with multiomics features across different cancer types; (iii) interactomes of EMT-related genes (miRNAs, transcription factors, and proteins); (iv) immune profiles identified from The Cancer Genome Atlas (TCGA) cohorts by exploring transcriptomics, epigenomics, and proteomics, and drug sensitivity and (iv) clinical outcomes of cancer cohorts linked to EMT gene signatures. CONCLUSION: The web-based EMTome portal is a resource for primary and metastatic tumour research publicly available at www.emtome.org .


Subject(s)
Databases, Genetic , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , Transcriptome/genetics , Humans , Internet , Neoplasms/pathology
12.
Br J Cancer ; 125(2): 176-189, 2021 07.
Article in English | MEDLINE | ID: mdl-33795809

ABSTRACT

BACKGROUND: The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. METHODS: We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. RESULTS: We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. CONCLUSIONS: CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


Subject(s)
Breast Neoplasms/immunology , CD4 Antigens/genetics , CD8 Antigens/genetics , CD8-Positive T-Lymphocytes/transplantation , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Platelet Factor 4/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , Gene Knockout Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, Nude , Myeloid-Derived Suppressor Cells/immunology , Neoplastic Cells, Circulating/immunology , Platelet Factor 4/administration & dosage , Platelet Factor 4/pharmacology , Survival Analysis , Transplantation, Isogeneic , Xenograft Model Antitumor Assays
13.
Nucleic Acids Res ; 46(D1): D956-D963, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29136207

ABSTRACT

The LinkedOmics database contains multi-omics data and clinical data for 32 cancer types and a total of 11 158 patients from The Cancer Genome Atlas (TCGA) project. It is also the first multi-omics database that integrates mass spectrometry (MS)-based global proteomics data generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) on selected TCGA tumor samples. In total, LinkedOmics has more than a billion data points. To allow comprehensive analysis of these data, we developed three analysis modules in the LinkedOmics web application. The LinkFinder module allows flexible exploration of associations between a molecular or clinical attribute of interest and all other attributes, providing the opportunity to analyze and visualize associations between billions of attribute pairs for each cancer cohort. The LinkCompare module enables easy comparison of the associations identified by LinkFinder, which is particularly useful in multi-omics and pan-cancer analyses. The LinkInterpreter module transforms identified associations into biological understanding through pathway and network analysis. Using five case studies, we demonstrate that LinkedOmics provides a unique platform for biologists and clinicians to access, analyze and compare cancer multi-omics data within and across tumor types. LinkedOmics is freely available at http://www.linkedomics.org.


Subject(s)
Databases, Genetic , Databases, Protein , Genomics , Neoplasm Proteins , Neoplasms/genetics , Proteomics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Datasets as Topic , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Genes, Retinoblastoma , Genes, erbB-2 , Humans , Information Storage and Retrieval , Intracellular Signaling Peptides and Proteins/genetics , Mass Spectrometry , Membrane Proteins/genetics , Neoplasm Proteins/analysis , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasms/metabolism , Neoplasms/mortality , Ovarian Neoplasms/chemistry , Ovarian Neoplasms/mortality , Phosphorylation/genetics , Prognosis , Protein Processing, Post-Translational/genetics , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Receptor, ErbB-2/genetics , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/physiology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , User-Computer Interface
14.
Nucleic Acids Res ; 45(W1): W130-W137, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28472511

ABSTRACT

Functional enrichment analysis has played a key role in the biological interpretation of high-throughput omics data. As a long-standing and widely used web application for functional enrichment analysis, WebGestalt has been constantly updated to satisfy the needs of biologists from different research areas. WebGestalt 2017 supports 12 organisms, 324 gene identifiers from various databases and technology platforms, and 150 937 functional categories from public databases and computational analyses. Omics data with gene identifiers not supported by WebGestalt and functional categories not included in the WebGestalt database can also be uploaded for enrichment analysis. In addition to the Over-Representation Analysis in the previous versions, Gene Set Enrichment Analysis and Network Topology-based Analysis have been added to WebGestalt 2017, providing complementary approaches to the interpretation of high-throughput omics data. The new user-friendly output interface and the GOView tool allow interactive and efficient exploration and comparison of enrichment results. Thus, WebGestalt 2017 enables more comprehensive, powerful, flexible and interactive functional enrichment analysis. It is freely available at http://www.webgestalt.org.


Subject(s)
Genes , Software , Animals , Cattle , Humans , Internet , Mice , Neoplasms/genetics , Rats , User-Computer Interface
15.
BMC Bioinformatics ; 19(Suppl 17): 495, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30591010

ABSTRACT

BACKGROUND: Due to recent technology advancements, disease related knowledge is growing rapidly. It becomes nontrivial to go through all published literature to identify associations between human diseases and genetic, environmental, and life style factors, disease symptoms, and treatment strategies. Here we report DLAD4U (Disease List Automatically Derived For You), an efficient, accurate and easy-to-use disease search engine based on PubMed literature. RESULTS: DLAD4U uses the eSearch and eFetch APIs from the National Center for Biotechnology Information (NCBI) to find publications related to a query and to identify diseases from the retrieved publications. The hypergeometric test was used to prioritize identified diseases for displaying to users. DLAD4U accepts any valid queries for PubMed, and the output results include a ranked disease list, information associated with each disease, chronologically-ordered supporting publications, a summary of the run, and links for file export. DLAD4U outperformed other disease search engines in our comparative evaluation using selected genes and drugs as query terms and manually curated data as "gold standard". For 100 genes that are associated with only one disease in the gold standard, the Mean Average Precision (MAP) measure from DLAD4U was 0.77, which clearly outperformed other tools. For 10 genes that are associated with multiple diseases in the gold standard, the mean precision, recall and F-measure scores from DLAD4U were always higher than those from other tools. The superior performance of DLAD4U was further confirmed using 100 drugs as queries, with an MAP of 0.90. CONCLUSIONS: DLAD4U is a new, intuitive disease search engine that takes advantage of existing resources at NCBI to provide computational efficiency and uses statistical analyses to ensure accuracy. DLAD4U is publicly available at http://dlad4u.zhang-lab.org .


Subject(s)
Information Storage and Retrieval , PubMed , Publications , Search Engine , Disease/genetics , Genetic Association Studies , Humans , Internet , Nitric Oxide Synthase Type III/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Gastroenterology ; 153(4): 1082-1095, 2017 10.
Article in English | MEDLINE | ID: mdl-28625833

ABSTRACT

BACKGROUND AND AIMS: Proteomics holds promise for individualizing cancer treatment. We analyzed to what extent the proteomic landscape of human colorectal cancer (CRC) is maintained in established CRC cell lines and the utility of proteomics for predicting therapeutic responses. METHODS: Proteomic and transcriptomic analyses were performed on 44 CRC cell lines, compared against primary CRCs (n=95) and normal tissues (n=60), and integrated with genomic and drug sensitivity data. RESULTS: Cell lines mirrored the proteomic aberrations of primary tumors, in particular for intrinsic programs. Tumor relationships of protein expression with DNA copy number aberrations and signatures of post-transcriptional regulation were recapitulated in cell lines. The 5 proteomic subtypes previously identified in tumors were represented among cell lines. Nonetheless, systematic differences between cell line and tumor proteomes were apparent, attributable to stroma, extrinsic signaling, and growth conditions. Contribution of tumor stroma obscured signatures of DNA mismatch repair identified in cell lines with a hypermutation phenotype. Global proteomic data showed improved utility for predicting both known drug-target relationships and overall drug sensitivity as compared with genomic or transcriptomic measurements. Inhibition of targetable proteins associated with drug responses further identified corresponding synergistic or antagonistic drug combinations. Our data provide evidence for CRC proteomic subtype-specific drug responses. CONCLUSIONS: Proteomes of established CRC cell line are representative of primary tumors. Proteomic data tend to exhibit improved prediction of drug sensitivity as compared with genomic and transcriptomic profiles. Our integrative proteogenomic analysis highlights the potential of proteome profiling to inform personalized cancer medicine.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Neoplasm Proteins/metabolism , Precision Medicine , Proteome , Biomarkers, Tumor/genetics , Cell Line, Tumor , Chromatography, Liquid , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Databases, Protein , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mutation , Neoplasm Proteins/genetics , Patient Selection , Polymorphism, Single Nucleotide , Proteomics/methods , Signal Transduction , Stromal Cells/metabolism , Tandem Mass Spectrometry , Transcriptome , Tumor Microenvironment
17.
BMC Cancer ; 18(1): 154, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29409474

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment. METHODS: Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells. RESULTS: By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer. CONCLUSIONS: ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Receptor, Endothelin B/genetics , Adult , Aged , Biomarkers, Tumor/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Endothelin Receptor Antagonists/therapeutic use , Female , Gene Regulatory Networks , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Molecular Targeted Therapy , Prognosis , Receptor, Endothelin B/metabolism
18.
J Virol ; 87(24): 13816-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24109231

ABSTRACT

Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.


Subject(s)
Dinucleoside Phosphates/genetics , Evolution, Molecular , Host-Pathogen Interactions , Invertebrates/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvovirus/genetics , Vertebrates/virology , Animals , DNA Methylation , Dinucleoside Phosphates/metabolism , Genome, Viral , Humans , Invertebrates/genetics , Invertebrates/metabolism , Methylation , Molecular Sequence Data , Parvoviridae Infections/genetics , Parvoviridae Infections/metabolism , Parvovirus/classification , Parvovirus/physiology , Phylogeny , Vertebrates/genetics , Vertebrates/metabolism
19.
BMC Neurosci ; 14: 3, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23286825

ABSTRACT

BACKGROUND: Genetic networks control cellular functions. Aberrations in normal cellular function are caused by mutations in genes that disrupt the fine tuning of genetic networks and cause disease or disorder. However, the large number of signalling molecules, genes and proteins that constitute such networks, and the consequent complexity of interactions, has restrained progress in research elucidating disease mechanisms. Hence, carrying out a systematic analysis of how diseases alter the character of these networks is important. We illustrate this through our work on neurodegenerative disease networks. We created a database, NeuroDNet, which brings together relevant information about signalling molecules, genes and proteins, and their interactions, for constructing neurodegenerative disease networks. DESCRIPTION: NeuroDNet is a database with interactive tools that enables the creation of interaction networks for twelve neurodegenerative diseases under one portal for interrogation and analyses. It is the first of its kind, which enables the construction and analysis of neurodegenerative diseases through protein interaction networks, regulatory networks and Boolean networks. The database has a three-tier architecture - foundation, function and interface. The foundation tier contains the human genome data with 23857 protein-coding genes linked to more than 300 genes reported in clinical studies of neurodegenerative diseases. The database architecture was designed to retrieve neurodegenerative disease information seamlessly through the interface tier using specific functional information. Features of this database enable users to extract, analyze and display information related to a disease in many different ways. CONCLUSIONS: The application of NeuroDNet was illustrated using three case studies. Through these case studies, the construction and analyses of a PPI network for angiogenin protein in amyotrophic lateral sclerosis, a signal-gene-protein interaction network for presenilin protein in Alzheimer's disease and a Boolean network for a mammalian cell cycle was demonstrated. NeuroDNet is accessible at http://bioschool.iitd.ac.in/NeuroDNet/.


Subject(s)
Computational Biology , Databases, Protein/statistics & numerical data , Gene Regulatory Networks/genetics , Neurodegenerative Diseases/genetics , Animals , Humans
20.
Nat Commun ; 14(1): 1684, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973282

ABSTRACT

Longitudinal bulk and single-cell omics data is increasingly generated for biological and clinical research but is challenging to analyze due to its many intrinsic types of variations. We present PALMO ( https://github.com/aifimmunology/PALMO ), a platform that contains five analytical modules to examine longitudinal bulk and single-cell multi-omics data from multiple perspectives, including decomposition of sources of variations within the data, collection of stable or variable features across timepoints and participants, identification of up- or down-regulated markers across timepoints of individual participants, and investigation on samples of same participants for possible outlier events. We have tested PALMO performance on a complex longitudinal multi-omics dataset of five data modalities on the same samples and six external datasets of diverse background. Both PALMO and our longitudinal multi-omics dataset can be valuable resources to the scientific community.


Subject(s)
Multiomics , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL