Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Nat Methods ; 21(6): 1063-1073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802520

ABSTRACT

The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.


Subject(s)
Cell Membrane , Ion Channels , Mechanotransduction, Cellular , Ion Channels/metabolism , Cell Membrane/metabolism , Mechanotransduction, Cellular/physiology , Humans , Molecular Dynamics Simulation , Calcium/metabolism , Animals
2.
Biomacromolecules ; 25(5): 3169-3177, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38684138

ABSTRACT

Achieving precise control over gelator alignment and morphology is crucial for crafting tailored materials and supramolecular structures with distinct properties. We successfully aligned the self-assembled micelles formed by a functionalized dipeptide 2NapFF into long 1-D "gel noodles" by cross-linking with divalent metal chlorides. We identify the most effective cross-linker for alignment, enhancing mechanical stability, and imparting functional properties. Our study shows that Group 2 metal ions are particularly suited for creating mechanically robust yet flexible gel noodles because of their ionic and nondirectional bonding with carboxylate groups. In contrast, the covalent nature and high directional bonds of d-block metal ions with carboxylates tend to disrupt the self-assembly of 2NapFF. Furthermore, the 2NapFF-Cu noodles demonstrated selective antibacterial activity, indicating that the potent antibacterial property of the copper(II) ion is preserved within the cross-linked system. By merging insights into molecular alignment, gel extrusion processing, and integrating specific functionalities, we illustrate how the versatility of dipeptide-based gels can be utilized in creating next-generation soft materials.


Subject(s)
Anti-Bacterial Agents , Copper , Gels , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Copper/chemistry , Copper/pharmacology , Gels/chemistry , Cross-Linking Reagents/chemistry , Dipeptides/chemistry , Dipeptides/pharmacology , Micelles , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
3.
Dig Dis Sci ; 68(10): 3857-3871, 2023 10.
Article in English | MEDLINE | ID: mdl-37650948

ABSTRACT

Visceral myopathy is a rare, life-threatening disease linked to identified genetic mutations in 60% of cases. Mostly due to the dearth of knowledge regarding its pathogenesis, effective treatments are lacking. The disease is most commonly diagnosed in children with recurrent or persistent disabling episodes of functional intestinal obstruction, which can be life threatening, often requiring long-term parenteral or specialized enteral nutritional support. Although these interventions are undisputedly life-saving as they allow affected individuals to avoid malnutrition and related complications, they also seriously compromise their quality of life and can carry the risk of sepsis and thrombosis. Animal models for visceral myopathy, which could be crucial for advancing the scientific knowledge of this condition, are scarce. Clearly, a collaborative network is needed to develop research plans to clarify genotype-phenotype correlations and unravel molecular mechanisms to provide targeted therapeutic strategies. This paper represents a summary report of the first 'European Forum on Visceral Myopathy'. This forum was attended by an international interdisciplinary working group that met to better understand visceral myopathy and foster interaction among scientists actively involved in the field and clinicians who specialize in care of people with visceral myopathy.


Subject(s)
Intestinal Pseudo-Obstruction , Malnutrition , Animals , Child , Humans , Quality of Life , Models, Animal , Mutation , Rare Diseases
4.
J Cell Physiol ; 237(3): 1857-1870, 2022 03.
Article in English | MEDLINE | ID: mdl-34913176

ABSTRACT

Regulatory volume decrease (RVD), a homeostatic process responsible for the re-establishment of the original cell volume upon swelling, is critical in controlling several functions, including migration. RVD is mainly sustained by the swelling-activated Cl- current (ICl,swell ), which can be modulated by cytoplasmic Ca2+ . Cell swelling also activates mechanosensitive channels, including the ubiquitously expressed Ca2+ -permeable channel Piezo1. We hypothesized that, by controlling cytoplasmic Ca2+ and in turn ICl,swell , Piezo1 is involved in the fine regulation of RVD and cell migration. We compared RVD and ICl,swell in wild-type (WT) HEK293T cells, which express endogenous levels of Piezo1, and in cells overexpressing (OVER) or knockout (KO) for Piezo1. Compared to WT, RVD was markedly increased in OVER, while virtually absent in KO cells. Consistently, ICl,swell amplitude was highest in OVER and lowest in KO cells, with WT cells displaying an intermediate level, suggesting a Ca2+ -dependent modulation of the current by Piezo1 channels. Indeed, in the absence of external Ca2+ , ICl,swell in both WT and OVER cells, as well as the RVD probed in OVER cells, were significantly lower than in the presence of Ca2+ and no longer different compared to KO cells. However, the Piezo-mediated Ca2+ influx was ineffective in enhancing ICl,swell in the absence of releasable Ca2+ from intracellular stores. The different expression levels of Piezo1 affected also cell migration which was strongly enhanced in OVER, while reduced in KO cells, as compared to WT. Taken together, our data indicate that Piezo1 controls RVD and migration in HEK293T cells by modulating ICl,swell through Ca2+ influx.


Subject(s)
Calcium , Cell Size , Chloride Channels , Ion Channels , Calcium/metabolism , Chloride Channels/metabolism , Chlorides/metabolism , Gene Knockout Techniques , HEK293 Cells , Humans , Ion Channels/genetics
5.
Eur Biophys J ; 51(2): 99-104, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34463775

ABSTRACT

In recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.


Subject(s)
Elasticity Imaging Techniques , Biomechanical Phenomena , Biophysics , Spectrum Analysis
6.
Sensors (Basel) ; 22(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36366122

ABSTRACT

This work presents a feedback closed-loop platform to be used for viscosity or viscoelasticity sensing of Newtonian or non-Newtonian fluids. The system consists of a photothermally excited microcantilever working in a digital Phase-Locked Loop, in which the phase between the excitation signal to the cantilever and the reference demodulating signals is chosen and imposed in the loop. General analytical models to describe the frequency and amplitude of oscillation of the cantilever immersed in viscous and viscoelastic fluids are derived and validated against experiments. In particular, the sensitivity of the sensor to variations of viscosity of Newtonian fluids, or to variations of elastic/viscous modulus of non-Newtonian fluids, are studied. Interestingly, it is demonstrated the possibility of controlling the sensitivity of the system to variations of these parameters by choosing the appropriate imposed phase in the loop. A working point with maximum sensitivity can be used for real-time detection of small changes of rheological parameters with low-noise and fast-transient response. Conversely, a working point with zero sensitivity to variations of rheological parameters can be potentially used to decouple the effect of simultaneous external factors acting on the resonator.

7.
Cell Biol Toxicol ; 37(6): 915-933, 2021 12.
Article in English | MEDLINE | ID: mdl-33420657

ABSTRACT

Mesenchymal stem cells represent an important resource, for bone regenerative medicine and therapeutic applications. This review focuses on new advancements and biophysical tools which exploit different physical and chemical markers of mesenchymal stem cell populations, to finely characterize phenotype changes along their osteogenic differentiation process. Special attention is paid to recently developed label-free methods, which allow monitoring cell populations with minimal invasiveness. Among them, quantitative phase imaging, suitable for single-cell morphometric analysis, and nanoindentation, functional to cellular biomechanics investigation. Moreover, the pool of ion channels expressed in cells during differentiation is discussed, with particular interest for calcium homoeostasis.Altogether, a biophysical perspective of osteogenesis is proposed, offering a valuable tool for the assessment of the cell stage, but also suggesting potential physiological links between apparently independent phenomena.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Biomarkers , Cell Differentiation , Cells, Cultured
8.
Sensors (Basel) ; 21(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925730

ABSTRACT

Nucleic acid (NA) extraction is a basic step for genetic analysis, from scientific research to diagnostic and forensic applications. It aims at preparing samples for its application with biomolecular technologies such as isothermal and non-isothermal amplification, hybridization, electrophoresis, Sanger sequencing and next-generation sequencing. Multiple steps are involved in NA collection from raw samples, including cell separation from the rest of the specimen, cell lysis, NA isolation and release. Typically, this process needs molecular biology facilities, specialized instrumentation and labor-intensive operations. Microfluidic devices have been developed to analyze NA samples with high efficacy and sensitivity. In this context, the integration within the chip of the sample preparation phase is crucial to leverage the promise of portable, fast, user-friendly and economic point-of-care solutions. This review presents an overview of existing lab-on-a-chip (LOC) solutions designed to provide automated NA extraction from human raw biological fluids, such as whole blood, excreta (urine and feces), saliva. It mainly focuses on LOC implementation aspects, aiming to describe a detailed panorama of strategies implemented for different human raw sample preparations.


Subject(s)
Microfluidic Analytical Techniques , Nucleic Acids , Humans , Lab-On-A-Chip Devices , Microfluidics , Nucleic Acid Amplification Techniques , Point-of-Care Systems
9.
Sensors (Basel) ; 21(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557265

ABSTRACT

Atomic force microscopy is an extremely versatile technique, featuring atomic-scale imaging resolution, and also offering the possibility to probe interaction forces down to few pN. Recently, this technique has been specialized to study the interaction between single living cells, one on the substrate, and a second being adhered on the cantilever. Cell-cell force spectroscopy offers a unique tool to investigate in fine detail intra-cellular interactions, and it holds great promise to elucidate elusive phenomena in physiology and pathology. Here we present a systematic study of the effect of the main measurement parameters on cell-cell curves, showing the importance of controlling the experimental conditions. Moreover, a simple theoretical interpretation is proposed, based on the number of contacts formed between the two interacting cells. The results show that single cell-cell force spectroscopy experiments carry a wealth of information that can be exploited to understand the inner dynamics of the interaction of living cells at the molecular level.


Subject(s)
Cell Communication , Mechanical Phenomena , Microscopy, Atomic Force , Spectrum Analysis
10.
J Nanobiotechnology ; 18(1): 147, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33081777

ABSTRACT

BACKGROUND: The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young's modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. RESULTS: Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young's modulus. CONCLUSIONS: The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.


Subject(s)
Actins/chemistry , Single-Cell Analysis/methods , Actin Cytoskeleton/metabolism , Brain , Cell Line , Elastic Modulus , Elasticity , Humans , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Biological , Nanotechnology , Spectrum Analysis , Stress, Mechanical
11.
Ecotoxicol Environ Saf ; 189: 109983, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31785944

ABSTRACT

For the first time, we report a correspondence between microplastics (MP) ingestion and ecotoxicological effects in gelatinous zooplankton (Cnidarian jellyfish). The ephyra stage of the jellyfish Aurelia sp. was exposed to both environmental and high concentrations of fluorescent 1-4 µm polyethylene MP (0.01-10 mg/L). After 24 and 48 h, MP accumulation, acute (Immobility) and behavioral (Frequency pulsation) endpoints were investigated. MP were detected by confocal and tomographic investigations on gelatinous body and mouth, either attached on the surface or ingested. This interaction was responsible for impairing ephyrae survival and behavior at all tested concentrations after 24 h. Acute and behavioral effects were also related to mechanical disturbance, caused by MP, triggering a loss of radial symmetry. Contaminated ephyrae exposed to clean seawater showed full recovery after 72 h highlighting the organisms without the microspheres, attached on body jellyfish surface around the mouth and lappets. In conclusion, short-term exposure to MP affects ephyrae jellyfish health, impairing both their survival and behavior. Polyethylene MP temporarily affect both Immobility and Frequency of pulsation of Aurelia sp. jellyfish. This study provides a first step towards understanding and clarifying the potential impacts of MP contamination in gelatinous zooplankton.


Subject(s)
Behavior, Animal/drug effects , Microplastics/toxicity , Scyphozoa/physiology , Water Pollutants, Chemical/toxicity , Zooplankton/physiology , Animals , Eating , Ecotoxicology , Polyethylene/toxicity , Scyphozoa/drug effects , Toxicity Tests, Acute , Zooplankton/drug effects
12.
Eur Biophys J ; 51(2): 97-98, 2022 03.
Article in English | MEDLINE | ID: mdl-35316358

Subject(s)
Nanotechnology , Biophysics
13.
Nanotechnology ; 27(41): 415502, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27608651

ABSTRACT

Atomic force microscopy (AFM) cantilevers have proven to be very effective mass sensors. The attachment of a small mass to a vibrating cantilever produces a resonance frequency shift that can be monitored, providing the ability to measure mass changes down to a few molecules resolution. Nevertheless, the lack of a practical method to handle the catch and release process required for dynamic weighting of microobjects strongly hindered the application of the technology beyond proof of concept measurements. Here, a method is proposed in which FluidFM hollow cantilevers are exploited to overcome the standard limitations of AFM-based mass sensors, providing high throughput single object weighting with picogram accuracy. The extension of the dynamic models of AFM cantilevers to hollow cantilevers was discussed and the effectiveness of mass weighting in air was validated on test samples.

14.
Appl Microbiol Biotechnol ; 99(13): 5593-603, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25683665

ABSTRACT

Staphylococcus epidermidis is the leading etiologic agent of device-related infections. S. epidermidis is able to bind, by means of the adhesins of its cell wall, the host matrix proteins filming the artificial surfaces. Thence, bacteria cling to biomaterials and infection develops. The effect of temperature on integrity, structure, and biological activity of the collagen-binding adhesin (SdrF) of S. epidermidis has been here investigated. By cloning in E. coli XL1-Blue, a recombinant of the SdrF binding domain B (rSdrFB), carrying an N-terminal polyhistidine, was obtained. Purification was by HiTrap(TM) Chelating HP columns. Assessment of purity, molecular weight, and integrity was by SDS-PAGE. The rSdrFB-collagen binding was investigated by ELISA. A full three-dimensional reconstruction of rSdrFB was achieved by small-angle X-ray scattering (SAXS). At 25 °C, rSdrFB bound to type I collagen in a dose-dependent, saturable manner, with a Kd of 2.48 × 10(-7) M. When temperature increased from 25 to 37 °C, a strong conformational change occurred, together with the abolition of the rSdrFB-collagen binding. The rSdrFB integrity was not affected by temperature variation. SdrFB-collagen binding is switched on/off depending on the temperature. Implications with the infection pathogenesis are enlightened.


Subject(s)
Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Collagen/metabolism , Protein Conformation/radiation effects , Staphylococcus epidermidis/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/isolation & purification , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Molecular Weight , Protein Binding/radiation effects , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Scattering, Small Angle , Staphylococcus epidermidis/genetics , Temperature
15.
Biophys Rev ; 16(2): 149-150, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737207

ABSTRACT

This Commentary describes an open call for submissions to the upcoming Biophysical Reviews' Issue Focus: The 7th Nanoengineering for Mechanobiology (Genova, Italy). The submission deadline is August 1st of 2024. Interested parties are requested to make contact with the Issue Focus editors prior to submission.

16.
Heliyon ; 10(11): e32458, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933959

ABSTRACT

This study sheds light on a ground-breaking biochemical mechanotransduction pathway and reveals how Piezo1 channels orchestrate cell migration. We observed an increased cell migration rate in HEK293T (HEK) cells treated with Yoda1, a Piezo1 agonist, or in HEK cells overexpressing Piezo1 (HEK + P). Conversely, a significant reduction in cell motility was observed in HEK cells treated with GsMTx4 (a channel inhibitor) or upon silencing Piezo1 (HEK-P). Our findings establish a direct correlation between alterations in cell motility, Piezo1 expression, abnormal F-actin microfilament dynamics, and the regulation of Cofilin1, a protein involved in severing F-actin microfilaments. Here, the conversion of inactive pCofilin1 to active Cofilin1, mediated by the serine/threonine-protein phosphatase 2A catalytic subunit C (PP2AC), resulted in increased severing of F-actin microfilaments and enhanced cell migration in HEK + P cells compared to HEK controls. However, this effect was negligible in HEK-P and HEK cells transfected with hsa-miR-133b, which post-transcriptionally inhibited PP2AC mRNA expression. In summary, our study suggests that Piezo1 regulates cell migration through a biochemical mechanotransduction pathway involving PP2AC-mediated Cofilin1 dephosphorylation, leading to changes in F-actin microfilament dynamics.

17.
Langmuir ; 29(51): 15898-906, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24328291

ABSTRACT

The adoption of a biomimetic approach in the design and fabrication of innovative materials for biomedical applications is encountering a growing interest. In particular, new molecules are being engineered on the basis of proteins present in the extracellular matrix, such as fibronectin, collagen, or elastin. Following this approach scientists expect to be able not only to obtain materials with tailored mechanical properties but also to elicit specific biological responses inherited by the mimicked tissue. In the present work, a novel peptide, engineered starting from the sequence encoded by exon 28 of human tropoelastin, was characterized from a chemical, physical, and biological point of view. The obtained molecule was observed to aggregate at high temperatures, forming a material able to induce a biological effect similar to what elastin does in the physiological context. This material seems to be a good candidate to play a relevant role in future biomedical applications with special reference to vascular surgery.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Cell Line, Tumor/metabolism , Peptides/chemistry , Peptides/metabolism , Tissue Engineering , Tropoelastin/genetics , Amino Acid Sequence , Animals , Biomimetic Materials/toxicity , Exons/genetics , Humans , Mechanical Phenomena , Mice , Molecular Sequence Data , Peptides/toxicity , Temperature
18.
Biomater Adv ; 145: 213277, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621197

ABSTRACT

Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins.


Subject(s)
Actins , Focal Adhesions , Focal Adhesions/metabolism , Actins/metabolism , Paxillin/metabolism , Cytoskeleton/metabolism , Vinculin/metabolism , Cell Shape
19.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049284

ABSTRACT

The evaluation of cell elasticity is becoming increasingly significant, since it is now known that it impacts physiological mechanisms, such as stem cell differentiation and embryogenesis, as well as pathological processes, such as cancer invasiveness and endothelial senescence. However, the results of single-cell mechanical measurements vary considerably, not only due to systematic instrumental errors but also due to the dynamic and non-homogenous nature of the sample. In this work, relying on Chiaro nanoindenter (Optics11Life), we characterized in depth the nanoindentation experimental procedure, in order to highlight whether and how experimental conditions could affect measurements of living cell stiffness. We demonstrated that the procedure can be quite insensitive to technical replicates and that several biological conditions, such as cell confluency, starvation and passage, significantly impact the results. Experiments should be designed to maximally avoid inhomogeneous scenarios to avoid divergences in the measured phenotype.

20.
Adv Mater ; 35(17): e2211277, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36720202

ABSTRACT

Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two-component system is used, showing that a non-gelling component modifies the assembly of the gelling component, allowing access to co-assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single-component system. Furthermore, the non-gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.

SELECTION OF CITATIONS
SEARCH DETAIL