Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Biol Chem ; 298(11): 102467, 2022 11.
Article in English | MEDLINE | ID: mdl-36087839

ABSTRACT

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Subject(s)
Potassium Channels, Voltage-Gated , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Amino Acid Sequence , Potassium Channel Blockers/chemistry , Peptides/chemistry , Ligands , Protein Isoforms/genetics , Protein Isoforms/metabolism , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Kv1.1 Potassium Channel/metabolism , Kv1.2 Potassium Channel/metabolism , Kv1.5 Potassium Channel/metabolism
2.
Biophys J ; 120(12): 2471-2481, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33932436

ABSTRACT

The α-Hairpinins are a family of plant defense peptides with a common fold presenting two short α-helices stabilized by two invariant S-S-bridges. We have shown previously that substitution of just two amino acid residues in a wheat α-hairpinin Tk-AMP-X2 leads to Tk-hefu-2 that features specific affinity to voltage-gated potassium channels KV1.3. Here, we utilize a combined molecular modeling approach based on molecular dynamics simulations and protein surface topography technique to improve the affinity of Tk-hefu-2 to KV1.3 while preserving its specificity. An important advance of this work compared with our previous studies is transition from the analysis of various physicochemical properties of an isolated toxin molecule to its consideration in complex with its target, a membrane-bound ion channel. As a result, a panel of computationally designed Tk-hefu-2 derivatives was synthesized and tested against KV1.3. The most active mutant Tk-hefu-10 showed a half-maximal inhibitory concentration of ∼150 nM being >10 times more active than Tk-hefu-2 and >200 times more active than the original Tk-hefu. We conclude that α-hairpinins provide an attractive disulfide-stabilized scaffold for the rational design of ion channel inhibitors. Furthermore, the success rate can be considerably increased by the proposed "target-based" iterative strategy of molecular design.


Subject(s)
Potassium Channel Blockers , Scorpion Venoms , Amino Acid Sequence , Molecular Dynamics Simulation , Peptides , Potassium Channel Blockers/pharmacology , Proteins
3.
Proteins ; 2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33713480

ABSTRACT

Old world scorpions produce an abundance of toxins called α-NaTx, which interfere with the fast inactivation of voltage-gated sodium channels. Their selectivity to channels of mammals or insects depends on a part of toxin named the specificity module. We report here the spatial structure of a major and broadly active toxin MeuNaTxα-1 from the venom of Mesobuthus eupeus. Notably, its specificity module is markedly different from other α-NaTx with known 3D structure. Close inspection shows that its conformation is a result of an interplay between protein motifs such as the nest and niche, which eventually shape α-NaTx structural diversity.

4.
Proc Natl Acad Sci U S A ; 115(17): 4495-4500, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29636418

ABSTRACT

Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.


Subject(s)
Mutation, Missense , NAV1.4 Voltage-Gated Sodium Channel/metabolism , Neurotoxins/toxicity , Paralysis, Hyperkalemic Periodic/metabolism , Protein Structure, Secondary , Spider Venoms/toxicity , Amino Acid Substitution , Animals , Female , HEK293 Cells , Humans , Ion Channel Gating , NAV1.4 Voltage-Gated Sodium Channel/chemistry , NAV1.4 Voltage-Gated Sodium Channel/genetics , Paralysis, Hyperkalemic Periodic/genetics , Paralysis, Hyperkalemic Periodic/pathology , Xenopus laevis
5.
J Biol Chem ; 294(48): 18349-18359, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31533989

ABSTRACT

Tk-hefu is an artificial peptide designed based on the α-hairpinin scaffold, which selectively blocks voltage-gated potassium channels Kv1.3. Here we present its spatial structure resolved by NMR spectroscopy and analyze its interaction with channels using computer modeling. We apply protein surface topography to suggest mutations and increase Tk-hefu affinity to the Kv1.3 channel isoform. We redesign the functional surface of Tk-hefu to better match the respective surface of the channel pore vestibule. The resulting peptide Tk-hefu-2 retains Kv1.3 selectivity and displays ∼15 times greater activity compared with Tk-hefu. We verify the mode of Tk-hefu-2 binding to the channel outer vestibule experimentally by site-directed mutagenesis. We argue that scaffold engineering aided by protein surface topography represents a reliable tool for design and optimization of specific ion channel ligands.


Subject(s)
Kv1.3 Potassium Channel/chemistry , Peptides/chemistry , Potassium Channel Blockers/chemistry , Proteins/chemistry , Amino Acid Sequence , Animals , Humans , Kv1.3 Potassium Channel/metabolism , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Dynamics Simulation , Mutation , Peptides/genetics , Peptides/metabolism , Potassium Channel Blockers/metabolism , Protein Binding , Protein Conformation , Proteins/metabolism , Surface Properties
6.
Proteins ; 86(10): 1117-1122, 2018 10.
Article in English | MEDLINE | ID: mdl-30007037

ABSTRACT

Sodium channel alpha-toxins from scorpion venom (α-NaTx) inhibit the inactivation of voltage-gated sodium channels. We used solution NMR to investigate the structure of BeM9 toxin from Mesobuthus eupeus scorpion, a prototype α-NaTx classified as an "α-like" toxin due to its wide spectrum of activity on insect and mammalian channels. We identified a new motif that we named "arginine hand," whereby arginine side chain forms several hydrogen bonds with main chain atoms. The arginine hand was found in the "specificity module," a part of the molecule that dictates toxin selectivity; and just single arginine-to-lysine point mutation drastically changed BeM9 selectivity profile.


Subject(s)
Arginine/chemistry , Arthropod Proteins/chemistry , Neurotoxins/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Models, Molecular , Protein Conformation , Sequence Alignment
7.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 465-472, 2017 May.
Article in English | MEDLINE | ID: mdl-28179135

ABSTRACT

We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity.


Subject(s)
Potassium Channel Blockers/chemistry , Protein Conformation , Scorpion Venoms/metabolism , Amino Acid Sequence/genetics , Animals , Crystallography, X-Ray , Electrophysiology , Kv1.2 Potassium Channel/antagonists & inhibitors , Kv1.2 Potassium Channel/chemistry , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/chemistry , Oocytes/metabolism , Patch-Clamp Techniques , Potassium/chemistry , Potassium/metabolism , Potassium Channel Blockers/isolation & purification , Potassium Channel Blockers/metabolism , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Scorpion Venoms/isolation & purification , Scorpions/chemistry , Scorpions/metabolism , Xenopus/genetics
8.
Biochem J ; 473(19): 3113-26, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27412961

ABSTRACT

Traditionally, arachnid venoms are known to contain two particularly important groups of peptide toxins. One is disulfide-rich neurotoxins with a predominance of ß-structure that specifically target protein receptors in neurons or muscle cells. The other is linear cationic cytotoxins that form amphiphilic α-helices and exhibit rather non-specific membrane-damaging activity. In the present paper, we describe the first 3D structure of a modular arachnid toxin, purotoxin-2 (PT2) from the wolf spider Alopecosa marikovskyi (Lycosidae), studied by NMR spectroscopy. PT2 is composed of an N-terminal inhibitor cystine knot (ICK, or knottin) ß-structural domain and a C-terminal linear cationic domain. In aqueous solution, the C-terminal fragment is hyper-flexible, whereas the knottin domain is very rigid. In membrane-mimicking environment, the C-terminal domain assumes a stable amphipathic α-helix. This helix effectively tethers the toxin to membranes and serves as a membrane-access and membrane-anchoring device. Sequence analysis reveals that the knottin + α-helix architecture is quite widespread among arachnid toxins, and PT2 is therefore the founding member of a large family of polypeptides with similar structure motifs. Toxins from this family target different membrane receptors such as P2X in the case of PT2 and calcium channels, but their mechanism of action through membrane access may be strikingly similar.


Subject(s)
Spider Venoms/chemistry , Amino Acid Sequence , Cell Membrane/drug effects , Circular Dichroism , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Protein Structure, Secondary , Sequence Homology, Amino Acid , Spider Venoms/pharmacology
9.
Biochem J ; 473(16): 2495-506, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27287558

ABSTRACT

In the present study, we show that venom of the ant spider Lachesana tarabaevi is unique in terms of molecular composition and toxicity. Whereas venom of most spiders studied is rich in disulfide-containing neurotoxic peptides, L. tarabaevi relies on the production of linear (no disulfide bridges) cytolytic polypeptides. We performed full-scale peptidomic examination of L. tarabaevi venom supported by cDNA library analysis. As a result, we identified several dozen components, and a majority (∼80% of total venom protein) exhibited membrane-active properties. In total, 33 membrane-interacting polypeptides (length of 18-79 amino acid residues) comprise five major groups: repetitive polypeptide elements (Rpe), latarcins (Ltc), met-lysines (MLys), cyto-insectotoxins (CIT) and latartoxins (LtTx). Rpe are short (18 residues) amphiphilic molecules that are encoded by the same genes as antimicrobial peptides Ltc 4a and 4b. Isolation of Rpe confirms the validity of the iPQM (inverted processing quadruplet motif) proposed to mark the cleavage sites in spider toxin precursors that are processed into several mature chains. MLys (51 residues) present 'idealized' amphiphilicity when modelled in a helical wheel projection with sharply demarcated sectors of hydrophobic, cationic and anionic residues. Four families of CIT (61-79 residues) are the primary weapon of the spider, accounting for its venom toxicity. Toxins from the CIT 1 and 2 families have a modular structure consisting of two shorter Ltc-like peptides. We demonstrate that in CIT 1a, these two parts act in synergy when they are covalently linked. This finding supports the assumption that CIT have evolved through the joining of two shorter membrane-active peptides into one larger molecule.


Subject(s)
Spider Venoms/toxicity , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Chromatography, High Pressure Liquid , Circular Dichroism , DNA, Complementary , Databases, Genetic , Female , Insecticides/pharmacology , Male , Microbial Sensitivity Tests , Molecular Weight , Protein Structure, Secondary , Sarcophagidae/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spider Venoms/chemistry , Spider Venoms/genetics , Spiders
10.
J Biol Chem ; 290(19): 12195-209, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25792741

ABSTRACT

The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/ß and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.


Subject(s)
Kv1.1 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/chemistry , Scorpion Venoms/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Chromatography , Escherichia coli/metabolism , Female , Fluorescent Dyes/chemistry , Gene Library , Inhibitory Concentration 50 , Ligands , Mass Spectrometry , Molecular Sequence Data , Oocytes , Phylogeny , Proteome , Rats , Scorpions , Sequence Homology, Amino Acid , Transcription, Genetic , Transcriptome , Xenopus
11.
J Biol Chem ; 290(1): 492-504, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25352595

ABSTRACT

We present a structural and functional study of a sodium channel activation inhibitor from crab spider venom. Hm-3 is an insecticidal peptide toxin consisting of 35 amino acid residues from the spider Heriaeus melloteei (Thomisidae). We produced Hm-3 recombinantly in Escherichia coli and determined its structure by NMR spectroscopy. Typical for spider toxins, Hm-3 was found to adopt the so-called "inhibitor cystine knot" or "knottin" fold stabilized by three disulfide bonds. Its molecule is amphiphilic with a hydrophobic ridge on the surface enriched in aromatic residues and surrounded by positive charges. Correspondingly, Hm-3 binds to both neutral and negatively charged lipid vesicles. Electrophysiological studies showed that at a concentration of 1 µm Hm-3 effectively inhibited a number of mammalian and insect sodium channels. Importantly, Hm-3 shifted the dependence of channel activation to more positive voltages. Moreover, the inhibition was voltage-dependent, and strong depolarizing prepulses attenuated Hm-3 activity. The toxin is therefore concluded to represent the first sodium channel gating modifier from an araneomorph spider and features a "membrane access" mechanism of action. Its amino acid sequence and position of the hydrophobic cluster are notably different from other known gating modifiers from spider venom, all of which are described from mygalomorph species. We hypothesize parallel evolution of inhibitor cystine knot toxins from Araneomorphae and Mygalomorphae suborders.


Subject(s)
Sodium Channel Blockers/chemistry , Spider Venoms/chemistry , Spiders/chemistry , Voltage-Gated Sodium Channels/chemistry , Amino Acid Sequence , Animals , Cell Membrane/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Gene Expression , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating , Membrane Potentials , Models, Molecular , Molecular Sequence Data , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium Channel Blockers/isolation & purification , Spider Venoms/classification , Spider Venoms/genetics , Spider Venoms/isolation & purification , Spiders/physiology , Unilamellar Liposomes/chemistry , Voltage-Gated Sodium Channels/metabolism
12.
Cell Mol Life Sci ; 72(23): 4501-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26286896

ABSTRACT

Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Peptides/chemistry , Peptides/pharmacology , Spider Venoms/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Protein Structure, Secondary , Spider Venoms/isolation & purification , Spider Venoms/pharmacology , Structure-Activity Relationship
13.
J Biol Chem ; 289(20): 14331-40, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24671422

ABSTRACT

In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 µm) to κ-hefutoxin 1 (IC50 ∼ 40 µm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Neurotoxins/chemistry , Protein Engineering , Scorpions/chemistry , Triticum/chemistry , Animals , Antimicrobial Cationic Peptides/pharmacology , Disulfides/chemistry , Electrophysiological Phenomena/drug effects , Models, Molecular , Neurotoxins/genetics , Nuclear Magnetic Resonance, Biomolecular , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
14.
J Biol Chem ; 288(26): 19014-27, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23637230

ABSTRACT

To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.


Subject(s)
Neurotoxins/chemistry , Scorpion Venoms/chemistry , Sodium Channels/chemistry , Amino Acid Sequence , Animals , Computational Biology , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Protein Interaction Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid , Structure-Activity Relationship , Surface Properties
15.
Biochim Biophys Acta ; 1828(2): 724-31, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23088912

ABSTRACT

Venom of Lachesana tarabaevi (Zodariidae, "ant spiders") exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices.


Subject(s)
Cysteine/chemistry , Spider Venoms/chemistry , Spider Venoms/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Animals , Cell Membrane/metabolism , Chromatography, High Pressure Liquid/methods , Circular Dichroism , DNA, Complementary/metabolism , Disulfides/chemistry , Electrophysiology/methods , Insecticides/chemistry , Lipids/chemistry , Mass Spectrometry/methods , Molecular Sequence Data , Neurotoxins/chemistry , Peptide Hydrolases/chemistry , Peptides/chemistry , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Sulfhydryl Compounds/chemistry
16.
Plant Mol Biol ; 84(1-2): 189-202, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24081691

ABSTRACT

Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C(1)X3C(2)XnC(3)X3C(4)), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C(1)-C(4) and C(2)-C(3). Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal "tail" regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S-S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.


Subject(s)
Antifungal Agents/metabolism , Plant Proteins/biosynthesis , Plant Proteins/metabolism , Seeds/metabolism , Stellaria/chemistry , Amino Acid Sequence , Antifungal Agents/chemistry , Cloning, Molecular , Evolution, Molecular , Fungi/drug effects , Gene Expression Regulation, Plant/physiology , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Seeds/chemistry , Seeds/genetics , Stellaria/metabolism
17.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563123

ABSTRACT

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Subject(s)
Arginine , ERG1 Potassium Channel , Molecular Dynamics Simulation , Scorpion Venoms , Animals , Humans , Arginine/chemistry , Arginine/metabolism , ERG1 Potassium Channel/chemistry , ERG1 Potassium Channel/metabolism , HEK293 Cells , Molecular Docking Simulation , Mutation , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/metabolism , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Scorpion Venoms/metabolism
18.
Biochim Biophys Acta ; 1818(11): 2868-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22842000

ABSTRACT

Recently, the novel peptide named purotoxin-1 (PT1) has been identified in the venom of the spider Geolycosa sp. and shown to exert marked modulatory effects on P2X3 receptors in rat sensory neurons. Here we studied another polypeptide from the same spider venom, purotoxin-2 (PT2), and demonstrated that it also affected activity of mammalian P2X3 receptors. The murine and human P2X3 receptors were heterologously expressed in cells of the CHO line, and nucleotide-gated currents were stimulated by CTP and ATP, respectively. Both PT1 and PT2 negligibly affected P2X3-mediated currents elicited by brief pulses of the particular nucleotide. When subthreshold CTP or ATP was added to the bath to exert the high-affinity desensitization of P2X3 receptors, both spider toxins strongly enhanced the desensitizing action of the ambient nucleotides. At the concentration of 50nM, PT1 and PT2 elicited 3-4-fold decrease in the IC(50) dose of ambient CTP or ATP. In contrast, 100nM PT1 and PT2 negligibly affected nucleotide-gated currents mediated by mP2X2 receptors or mP2X2/mP2X3 heteromers. Altogether, our data point out that the PT1 and PT2 toxins specifically target the fast-desensitizing P2X3 receptor, thus representing a unique tool to manipulate its activity.


Subject(s)
Receptors, Purinergic P2X3/drug effects , Spider Venoms/pharmacology , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , DNA Primers , Mass Spectrometry , Polymerase Chain Reaction , Spectrophotometry, Ultraviolet
19.
Arch Microbiol ; 195(3): 173-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23277388

ABSTRACT

Antichlamydial activity of cyto-insectotoxin 1a (CIT 1a), representative of a unique class of antimicrobial peptides from the venom of the Central Asian spider Lachesana tarabaevi, was studied. A plasmid vector expressing the cit 1a gene controlled by a human cytomegalovirus tetracycline-dependent promoter was constructed. Impressive inhibition of Chlamydia trachomatis infection in HEK 293 cells transfected by the cit 1a-harboring vector was achieved. With the use of various schemes of cell infection and gene expression induction, it was shown for the first time that an antimicrobial peptide exerts its potent antichlamydial action at an early stage of the pathogen life cycle.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Chlamydia trachomatis/drug effects , Spider Venoms/chemistry , Spiders/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Chlamydia Infections/prevention & control , Chlamydia trachomatis/genetics , Genetic Vectors/genetics , HEK293 Cells , Humans , Plasmids/genetics , Promoter Regions, Genetic/genetics , Transfection
20.
Anal Bioanal Chem ; 405(7): 2379-89, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23307127

ABSTRACT

Human voltage-gated potassium channel Kv1.3 is an important pharmacological target for the treatment of autoimmune and metabolic diseases. Increasing clinical demands stipulate an active search for efficient and selective Kv1.3 blockers. Here we present a new, reliable, and easy-to-use analytical system designed to seek for and study Kv1.3 ligands that bind to the extracellular vestibule of the K(+)-conducting pore. It is based on Escherichia coli spheroplasts with the hybrid protein KcsA-Kv1.3 embedded into the membrane, fluorescently labeled Kv1.3 blocker agitoxin-2, and confocal laser scanning microscopy as a detection method. This system is a powerful alternative to radioligand and patch-clamp techniques. It enables one to search for Kv1.3 ligands both among individual compounds and in complex mixtures, as well as to characterize their affinity to Kv1.3 channel using the "mix and read" mode. To demonstrate the potential of the system, we performed characterization of several known Kv1.3 ligands, tested nine spider venoms for the presence of Kv1.3 ligands, and conducted guided purification of a channel blocker from scorpion venom.


Subject(s)
Drug Evaluation, Preclinical/methods , Escherichia coli/genetics , Kv1.3 Potassium Channel/chemistry , Microscopy, Confocal/methods , Animals , Escherichia coli/chemistry , Escherichia coli/metabolism , Gene Expression , Humans , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Ligands , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scorpion Venoms/chemistry , Scorpion Venoms/genetics , Scorpion Venoms/metabolism , Scorpions , Spheroplasts/chemistry , Spheroplasts/genetics , Spheroplasts/metabolism , Spider Venoms/chemistry , Spiders
SELECTION OF CITATIONS
SEARCH DETAIL