Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Chem Biol ; 19(2): 230-238, 2023 02.
Article in English | MEDLINE | ID: mdl-36302899

ABSTRACT

Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis. Guided by crystallography, activity assays and cellular CoQ measurements, we repurposed the 4-anilinoquinoline scaffold to selectively inhibit human COQ8A in cells. Our chemical tool promises to lend mechanistic insights into the activities of these widespread and understudied proteins and to offer potential therapeutic strategies for human diseases connected to their dysfunction.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Ubiquinone/pharmacology , Ubiquinone/chemistry , Saccharomyces cerevisiae Proteins/metabolism
2.
Nat Chem Biol ; 18(6): 596-604, 2022 06.
Article in English | MEDLINE | ID: mdl-35314814

ABSTRACT

Current small-molecule inhibitors of KRAS(G12C) bind irreversibly in the switch-II pocket (SII-P), exploiting the strong nucleophilicity of the acquired cysteine as well as the preponderance of the GDP-bound form of this mutant. Nevertheless, many oncogenic KRAS mutants lack these two features, and it remains unknown whether targeting the SII-P is a practical therapeutic approach for KRAS mutants beyond G12C. Here we use NMR spectroscopy and a cellular KRAS engagement assay to address this question by examining a collection of SII-P ligands from the literature and from our own laboratory. We show that the SII-Ps of many KRAS hotspot (G12, G13, Q61) mutants are accessible using noncovalent ligands, and that this accessibility is not necessarily coupled to the GDP state of KRAS. The results we describe here emphasize the SII-P as a privileged drug-binding site on KRAS and unveil new therapeutic opportunities in RAS-driven cancer.


Subject(s)
Multiple Myeloma , Proto-Oncogene Proteins p21(ras) , Humans , Ligands , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
3.
Molecules ; 28(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049713

ABSTRACT

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.


Subject(s)
Cell Cycle Proteins , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Protein Kinases , Cell Proliferation , Mitosis , Protein Kinase Inhibitors/pharmacology
4.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Article in English | MEDLINE | ID: mdl-32251410

ABSTRACT

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement , Doublecortin Protein , Doublecortin-Like Kinases , Drug Screening Assays, Antitumor , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacokinetics , Proteomics , Rats , Structure-Activity Relationship , Zebrafish , Pancreatic Neoplasms
5.
Angew Chem Int Ed Engl ; 58(2): 515-519, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30431220

ABSTRACT

Histone lysine demethylases (KDMs) are involved in the dynamic regulation of gene expression and they play a critical role in several biological processes. Achieving selectivity over the different KDMs has been a major challenge for KDM inhibitor development. Here we report potent and selective KDM5 covalent inhibitors designed to target cysteine residues only present in the KDM5 sub-family. The covalent binding to the targeted proteins was confirmed by MS and time-dependent inhibition. Additional competition assays show that compounds were non 2-OG competitive. Target engagement and ChIP-seq analysis showed that the compounds inhibited the KDM5 members in cells at nano- to micromolar levels and induce a global increase of the H3K4me3 mark at transcriptional start sites.

6.
J Am Chem Soc ; 140(46): 15774-15782, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30362749

ABSTRACT

Target residence time is emerging as an important optimization parameter in drug discovery, yet target and off-target engagement dynamics have not been clearly linked to the clinical performance of drugs. Here we developed high-throughput binding kinetics assays to characterize the interactions of 270 protein kinase inhibitors with 40 clinically relevant targets. Analysis of the results revealed that on-rates are better correlated with affinity than off-rates and that the fraction of slowly dissociating drug-target complexes increases from early/preclinical to late stage and FDA-approved compounds, suggesting distinct contributions by each parameter to clinical success. Combining binding parameters with PK/ADME properties, we illustrate in silico and in cells how kinetic selectivity could be exploited as an optimization strategy. Furthermore, using bio- and chemoinformatics we uncovered structural features influencing rate constants. Our results underscore the value of binding kinetics information in rational drug design and provide a resource for future studies on this subject.


Subject(s)
Phosphotransferases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Binding Sites , Drug Discovery , Humans , Kinetics , Molecular Structure , Phosphotransferases/metabolism , Protein Kinase Inhibitors/chemistry
7.
Biochemistry ; 56(1): 219-227, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-28001367

ABSTRACT

Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown. We synthesized alkene isosteres of the cis and trans isomers to probe the conformational preferences of human CP4H1. We discovered that the presence of a prolyl peptide bond is necessary for catalysis. The cis isostere is, however, an inhibitor with a potency greater than that of the trans isostere, suggesting that the cis conformation of a prolyl peptide bond is recognized preferentially. Comparative studies with a Chlamydomonas reinhardtii P4H, which has a similar catalytic domain but lacks an N-terminal substrate-binding domain, showed a similar preference for the cis isostere. These findings support the hypothesis that the catalytic domain of CP4Hs recognizes the cis conformation of the prolyl peptide bond and inform the use of alkenes as isosteres for peptide bonds.


Subject(s)
Alkenes/chemistry , Hydroxyproline/chemistry , Peptides/chemistry , Procollagen-Proline Dioxygenase/chemistry , Proline/chemistry , Prolyl Hydroxylases/chemistry , Alkenes/metabolism , Catalytic Domain , Chlamydomonas reinhardtii/enzymology , Humans , Hydroxylation , Hydroxyproline/metabolism , Isomerism , Kinetics , Models, Chemical , Molecular Structure , Peptides/metabolism , Procollagen-Proline Dioxygenase/metabolism , Proline/metabolism , Prolyl Hydroxylases/metabolism , Protein Binding , Species Specificity , Substrate Specificity
8.
Biochemistry ; 55(23): 3224-33, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27183028

ABSTRACT

Collagen is the most abundant protein in animals. The posttranslational hydroxylation of proline residues in collagen contributes greatly to its conformational stability. Deficient hydroxylation is associated with a variety of disease states, including scurvy. The hydroxylation of proline residues in collagen is catalyzed by an Fe(II)- and α-ketoglutarate-dependent dioxygenase, collagen prolyl 4-hydroxylase (CP4H). CP4H has long been known to suffer oxidative inactivation during catalysis, and the cofactor ascorbate (vitamin C) is required to reactivate the enzyme by reducing its iron center from Fe(III) to Fe(II). Herein, we report on the discovery of the first synthetic activators of CP4H. Specifically, we find that 2,2'-bipyridine-4-carboxylate and 2,2'-bipyridine-5-carboxylate serve as ligands for the iron center in human CP4H that enhance the rate of ascorbate-dependent reactivation. This new mode of CP4H activation is available to other biheteroaryl compounds but does not necessarily extend to other prolyl 4-hydroxylases. As collagen is weakened in many indications, analogous activators of CP4H could have therapeutic benefits.


Subject(s)
2,2'-Dipyridyl/metabolism , Ascorbic Acid/metabolism , Iron/metabolism , Proline/metabolism , Prolyl Hydroxylases/metabolism , 2,2'-Dipyridyl/chemistry , Catalysis , Catalytic Domain , Humans , Hydroxylation , Kinetics , Ligands , Proline/chemistry
9.
Bioorg Med Chem ; 23(13): 3081-90, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26022078

ABSTRACT

Collagen is the most abundant protein in animals. A variety of indications are associated with the overproduction of collagen, including fibrotic diseases and cancer metastasis. The stability of collagen relies on the posttranslational modification of proline residues to form (2S,4R)-4-hydroxyproline. This modification is catalyzed by collagen prolyl 4-hydroxylases (CP4Hs), which are Fe(II)- and α-ketoglutarate (AKG)-dependent dioxygenases located in the lumen of the endoplasmic reticulum. Human CP4Hs are validated targets for treatment of both fibrotic diseases and metastatic breast cancer. Herein, we report on 2,2'-bipyridinedicarboxylates as inhibitors of a human CP4H. Although most 2,2'-bipyridinedicarboxylates are capable of inhibition via iron sequestration, the 4,5'- and 5,5'-dicarboxylates were found to be potent competitive inhibitors of CP4H, and the 5,5'-dicarboxylate was selective in its inhibitory activity. Our findings clarify a strategy for developing CP4H inhibitors of clinical utility.


Subject(s)
Carboxylic Acids/chemistry , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Iron Chelating Agents/chemistry , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Prolyl-Hydroxylase Inhibitors/chemistry , Pyridines/chemistry , Animals , Binding, Competitive , Carboxylic Acids/chemical synthesis , Collagen/antagonists & inhibitors , Collagen/biosynthesis , Dose-Response Relationship, Drug , Enzyme Assays , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/chemistry , Iron/metabolism , Iron Chelating Agents/chemical synthesis , Isoenzymes/antagonists & inhibitors , Isoenzymes/chemistry , Kinetics , Procollagen-Proline Dioxygenase/chemistry , Prolyl-Hydroxylase Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Recombinant Proteins/chemistry
10.
Methods Mol Biol ; 2797: 287-297, 2024.
Article in English | MEDLINE | ID: mdl-38570468

ABSTRACT

Dysfunction of the RAS/mitogen-activated protein kinase (MAPK) pathway is a common driver of human cancers. As such, both the master regulator of the pathway, RAS, and its proximal kinase effectors, RAFs, have been of interest as drug targets for decades. Importantly, signaling within the RAS/MAPK pathway is highly coordinated due to the formation of a higher-order complex called the RAS/RAF signalosome, which may minimally contain dimers of both RAS and RAF protomers. In the disease state, RAS and RAF assemble in homo- and/or heterodimeric forms. Traditionally, drug development campaigns for both RAS and RAF have utilized biochemical assays of purified recombinant protein. As these assays do not query the RAS or RAF proteins in their full-length and complexed forms in cells, potency results collected using these assays have often failed to correlate with inhibition of the MAPK pathway. To more accurately quantify engagement at this signaling components, we present a bioluminescence resonance energy transfer (BRET)-based method to conditionally measure target engagement at individual protomers within the RAS/RAF signalosome in live cells.


Subject(s)
Mitogen-Activated Protein Kinases , Proto-Oncogene Proteins c-raf , Humans , Proto-Oncogene Proteins c-raf/metabolism , Protein Subunits , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction
11.
Nat Commun ; 15(1): 5646, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969708

ABSTRACT

Investigating ligand-protein complexes is essential in the areas of chemical biology and drug discovery. However, detailed information on key reagents such as fluorescent tracers and associated data for the development of widely used bioluminescence resonance energy transfer (BRET) assays including NanoBRET, time-resolved Förster resonance energy transfer (TR-FRET) and fluorescence polarization (FP) assays are not easily accessible to the research community. We created tracerDB, a curated database of validated tracers. This resource provides an open access knowledge base and a unified system for tracer and assay validation. The database is freely available at https://www.tracerdb.org/ .


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Crowdsourcing , Humans , Fluorescent Dyes/chemistry , Drug Discovery/methods , Ligands , Databases, Factual , Bioluminescence Resonance Energy Transfer Techniques/methods , Fluorescence Polarization/methods
12.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915605

ABSTRACT

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that is activated by phosphorylation events downstream of FcR, B-cell and T-cell receptors, integrins, and C-type lectin receptors. When the tandem Src homology 2 (SH2) domains of SYK bind to phosphorylated immunoreceptor tyrosine-based activation motifs (pITAMs) contained within these immunoreceptors, or when SYK is phosphorylated in interdomain regions A and B, SYK is activated. SYK gain-of-function (GoF) variants were previously identified in six patients that had higher levels of phosphorylated SYK and phosphorylated downstream proteins JNK and ERK. Furthermore, the increased SYK activation resulted in the clinical manifestation of immune dysregulation, organ inflammation, and a predisposition for lymphoma. The knowledge that the SYK GoF variants have enhanced activity was leveraged to develop a SYK NanoBRET cellular target engagement assay in intact live cells with constructs for the SYK GoF variants. Herein, we developed a potent SYK-targeted NanoBRET tracer using a SYK donated chemical probe, MRL-SYKi, that enabled a NanoBRET cellular target engagement assay for SYK GoF variants, SYK(S550Y), SYK(S550F), and SYK(P342T). We determined that ATP-competitive SYK inhibitors bind potently to these SYK variants in intact live cells. Additionally, we demonstrated that MRL-SYKi can effectively reduce the catalytic activity of SYK variants, and the phosphorylation levels of SYK(S550Y) in an epithelial cell line (SW480) stably expressing SYK(S550Y).

13.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225213

ABSTRACT

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Male , Humans , Aged , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3 , Androgens , TOR Serine-Threonine Kinases/metabolism , Prostatic Neoplasms/genetics , Cell Proliferation , Apoptosis , Cell Line, Tumor
14.
Bioorg Med Chem ; 21(12): 3597-601, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23702396

ABSTRACT

Collagen is the most abundant protein in animals. Its prevalent 4-hydroxyproline residues contribute greatly to its conformational stability. The hydroxyl groups arise from a post-translational modification catalyzed by the nonheme iron-dependent enzyme, collagen prolyl 4-hydroxylase (P4H). Here, we report that 4-oxo-5,6-epoxyhexanoate, a mimic of the α-ketoglutarate co-substrate, inactivates human P4H. The inactivation installs a ketone functionality in P4H, providing a handle for proteomic experiments. Caenorhabditis elegans exposed to the esterified epoxy ketone displays the phenotype of a worm lacking P4H. Thus, this affinity label can be used to mediate collagen stability in an animal, as is desirable in the treatment of a variety of fibrotic diseases.


Subject(s)
Collagen/metabolism , Prolyl Hydroxylases/metabolism , Animals , Biocatalysis , Collagen/chemistry , Humans , Ketones/chemistry , Ketones/metabolism , Molecular Structure , Prolyl Hydroxylases/chemistry
15.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36865333

ABSTRACT

PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential anti target of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1 we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In cell target engagement for PLK1 was in good agreement with the reported cellular potency for inhibition of cell proliferation. Probe 11 enabled investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib by NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses.

16.
Methods Mol Biol ; 2706: 97-124, 2023.
Article in English | MEDLINE | ID: mdl-37558944

ABSTRACT

Kinases represent one of the most therapeutically tractable targets for drug discovery in the twenty-first century. However, confirming engagement and achieving intracellular kinase selectivity for small-molecule kinase inhibitors can represent noteworthy challenges. The NanoBRETTM platform enables broad-spectrum live-cell kinase selectivity profiling in most laboratory settings, without advanced instrumentation or expertise. However, the prototype workflow for this selectivity profiling is currently limited to manual liquid handling and 96-well plates. Herein, we describe a scalable workflow with automation and acoustic dispensing, thus dramatically improving the throughput. Such adaptations enable profiling of larger compound sets against 192 full-length protein kinases in live cells, with statistical robustness supporting quantitative analysis.


Subject(s)
High-Throughput Screening Assays , Protein Kinases , Protein Kinases/metabolism , Drug Discovery
17.
Cell Chem Biol ; 30(11): 1354-1365.e6, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37643616

ABSTRACT

RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells. RAF target engagement can be measured in the presence or absence of any mutant KRAS allele, enabling the high-affinity state of RAF dimer inhibitors to be quantified in the cellular milieu. The intracellular protomer selectivity of clinical-stage type II RAF inhibitors revealed that ARAF protomer engagement, but not engagement of BRAF or CRAF, is commensurate with inhibition of MAPK signaling in various mutant RAS cell lines. Our results support a fundamental role for ARAF in mutant RAS signaling and reveal poor ARAF protomer vulnerability for a cohort of RAF inhibitors undergoing clinical evaluation.


Subject(s)
Proto-Oncogene Proteins B-raf , Signal Transduction , Humans , Protein Subunits/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Mutation , MAP Kinase Signaling System
18.
Cell Chem Biol ; 30(8): 987-998.e24, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37490918

ABSTRACT

DNA-encoded libraries (DELs) provide unmatched chemical diversity and starting points for novel drug modalities. Here, we describe a workflow that exploits the bifunctional attributes of DEL ligands as a platform to generate BRET probes for live cell target engagement studies. To establish proof of concept, we performed a DEL screen using aurora kinase A and successfully converted aurora DEL ligands as cell-active BRET probes. Aurora BRET probes enabled the validation and stratification of the chemical series identified from primary selection data. Furthermore, we have evaluated the effective repurposing of pre-existing DEL screen data to find suitable leads for BRET probe development. Our findings support the use of DEL workflows as an engine to create cell-active BRET probes independent of structure or compound SAR. The combination of DEL and BRET technology accelerates hit-to-lead studies in a live cell setting.


Subject(s)
Research , Ligands
19.
Front Cell Dev Biol ; 10: 886537, 2022.
Article in English | MEDLINE | ID: mdl-35721509

ABSTRACT

E3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins via recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options. Recent efforts have focused on the E3 family of Baculovirus IAP Repeat (BIR) domains that comprise a structurally conserved but diverse 70 amino acid long protein interaction domain. In the human proteome, 16 BIR domains have been identified, among them promising drug targets such as the Inhibitors of Apoptosis (IAP) family, that typically contain three BIR domains (BIR1, BIR2, and BIR3). To date, this target area lacks assay tools that would allow comprehensive evaluation of inhibitor selectivity. As a consequence, the selectivity of current BIR domain targeting inhibitors is unknown. To this end, we developed assays that allow determination of inhibitor selectivity in vitro as well as in cellulo. Using this toolbox, we have characterized available BIR domain inhibitors. The characterized chemical starting points and selectivity data will be the basis for the generation of new chemical probes for IAP proteins with well-characterized mode of action and provide the basis for future drug discovery efforts and the development of PROTACs and molecular glues.

20.
J Med Chem ; 65(2): 1370-1383, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34668706

ABSTRACT

Inhibitors targeting the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harboring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations has motivated the development of successive generations of inhibitors that bind in the ATP site. The third-generation agent osimertinib is now a first-line treatment for this disease. Recently, allosteric inhibitors have been developed to overcome drug-resistant mutations that confer a resistance to osimertinib. Here, we present the structure-guided design and synthesis of a mutant-selective lead compound, which consists of a pyridinyl imidazole-fused benzylisoindolinedione scaffold that simultaneously occupies the orthosteric and allosteric sites. The compound potently inhibits enzymatic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with a significantly lower activity for wild-type EGFR (47 nM). Additionally, this compound achieves modest cetuximab-independent and mutant-selective cellular efficacies on the L858R (1.2 µM) and L858R/T790M (4.4 µM) variants.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Design , Drug Resistance, Neoplasm/drug effects , Imidazoles/chemistry , Mutation , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Allosteric Site , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL