Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36839124

ABSTRACT

Air pollution in the urban environment is a topical subject. Aero-suspended particles can cause respiratory diseases in humans, ranging from inflammation to asthma and cancer. One of the components that is most prevalent in particulate matter (PM) in urban areas is the set of tire microparticles (1-20 µm) and nanoparticles (<1 µm) that are formed due to the friction of wheels with asphalt and are increased in slow-moving areas that involve a lot of braking actions. In this work, we studied the effect that microparticles generated from passenger tires (PTWP, passenger tire wear particles) have in vitro on murine macrophages cells RAW 264.7 at two concentrations of 25 and 100 µg/mL, for 24 and 48 h. In addition to the chemical characterization of the material and morphological characterization of the treated cells by transmission electron microscopy, gene expression analysis with RT-PCR and active protein analysis with Western blotting were performed. Growth curves were obtained, and the genotoxic effect was evaluated with a comet assay. The results indicate that initially, an induction of the apoptotic process is observable, but this is subsequently reversed by Bcl2. No genotoxic damage is present, but mild cellular abnormalities were observed in the treated cells.

2.
PLoS One ; 17(6): e0269913, 2022.
Article in English | MEDLINE | ID: mdl-35687599

ABSTRACT

Molecular biology techniques are increasingly being used in sex identification of skeletal remains when traditional anthropometric analyzes are not successful in identifying sex of remains that are incomplete, fragmented and /or of immature individuals. In the present work, we investigated the possibility of determining sex by using the qPCR-duplex method for both ancient and modern DNA samples. This method involves the co-amplification of two genes in a single reaction system and the subsequent analysis of the fusion curves; the gene sequences used for the construction of suitable primers are those of steroid sulfatase (STS) and testis specific protein Y-linked 1 (TSPY) genes which turned out to be two sensitive markers as they have a detection limit of 60 pg and 20 pg respectively on modern DNA. The validity of the method was verified on modern DNA in which gender was identified in all the samples with 100% accuracy; thus, allowing for the same results as the classic method with amelogenin, but in a faster and more immediate way, as it allows for sex determination solely by analyzing the denaturation curves without having to perform an electrophoretic run. The proposed molecular technique proves to be sensitive and precise even on degraded DNA, in fact on 9 archaeological finds dating from the VII-XII century in which sex had been identified through anthropometric analysis, it confirmed the sex of 8 out of 9 finds correctly.


Subject(s)
DNA, Ancient , Sex Determination Analysis , Amelogenin/genetics , DNA/analysis , DNA/genetics , Humans , Male , Real-Time Polymerase Chain Reaction , Sex Determination Analysis/methods
3.
PLoS One ; 16(7): e0255120, 2021.
Article in English | MEDLINE | ID: mdl-34297768

ABSTRACT

The potential risks of environmental nanoparticles (NPs), in particular Polystyrene Nanoparticles (PNPs), is an emerging problem; specifically, the interaction of PNPs with intestinal cells has not been characterized so far. The mechanism by which polystyrene particles are transferred to humans has not yet been clarified, whether directly through ingestion from contaminated food. We evaluated the interaction between PNPs and colorectal adenocarcinoma cells (HCT116). Cells were exposed to different concentrations of PNPs, metabolic activity and the consequent cytotoxic potential were assessed through viability test; we evaluated the PNP genotoxic potential through the Cytokinesis-Block Micronucleus cytome (CBMN cyt) assay. Finally, we detected Reactive Oxygen Species (ROS) production after NPs exposure and performed Western Blot analysis to analyze the enzymes (SOD1, SOD2, Catalase, Glutathione Peroxidase) involved in the cell detoxification process that comes into play during the cell-PNPs interaction. This work analyzes the cyto and genotoxicity of PNPs in the colorectal HCT116 cell line, in particular the potential damage from oxidative stress produced by PNPs inside the cells related to the consequent nuclear damage. Our results show moderate toxicity of PNPs both in terms of ROS production and DNA damage. Further studies will be needed on different cell lines to have a more complete picture of the impact of environmental pollution on human health in terms of PNPs cytotoxicity and genotoxicity.


Subject(s)
Mutagens/toxicity , Nanoparticles/toxicity , Oxidants/toxicity , Polystyrenes/toxicity , DNA Damage , HCT116 Cells , Humans , Mutagens/chemistry , Nanoparticles/chemistry , Oxidants/chemistry , Oxidative Stress
4.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494245

ABSTRACT

Background: TiO2 nanoparticles (TiO2 NPs) are the nanomaterial most produced as an ultraviolet (UV) filter. However, TiO2 is a semiconductor and, in nanoparticle size, is a strong photocatalyst, raising concerns about photomutagenesis. Mesoporous silica nanoparticles (MSN) were synthetized incorporating TiO2 NPs (TiO2@MSN) to develop a cosmetic UV filter. The aim of this study was to assess the toxicity of TiO2@MSN, compared with bare MSN and commercial TiO2 NPs, based on several biomarkers. Materials and Methods: Human peripheral blood mononuclear cells (PBMC) were exposed to TiO2@MSN, bare MSN (network) or commercial TiO2 NPs for comparison. Exposed PBMC were characterized for cell viability/apoptosis, reactive oxygen species (ROS), nuclear morphology, and cytokines secretion. Results: All the nanoparticles induced apoptosis, but only TiO2 NPs (alone or assembled into MSN) led to ROS and micronuclei. However, TiO2@MSN showed lower ROS and cytotoxicity with respect to the P25. Exposure to TiO2@MSN induced Th2-skewed and pro-fibrotic responses. Conclusions: Geno-cytotoxicity data indicate that TiO2@MSN are safer than P25 and MSN. Cytokine responses induced by TiO2@MSN are imputable to both the TiO2 NPs and MSN, and, therefore, considered of low immunotoxicological relevance. This analytical assessment might provide hints for NPs modification and deep purification to reduce the risk of health effects in the settings of their large-scale manufacturing and everyday usage by consumers.

5.
Heliyon ; 5(10): e02586, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31646208

ABSTRACT

Study of ancient DNA makes it possible to analyze genetic relationships between individuals and populations of past and present. In this paper we have analyzed remains of human bones, dating back to the 8th-10th century AD, from the burials found in the Cathedral of Santa Maria in Civitate, archaeological site of Amiternum, L'Aquila, Italy. As a genetic marker, the hypervariable region 1 of mitochondrial DNA (HVR1) was selected. To obtain reliable sequences from the hypervariable region 1 of mtDNA (HVR1) were performed: multiple extractions, template quantification and cloning of PCR products. The sequences obtained were compared with Anderson's sequence for the identification of polymorphisms (SNP) and haplogroups. The data obtained were analyzed with various software and phylogenetic methods. For the comparison between populations, ancient and modern sequences found in databases and literature have been used. This work provides preliminary information on the correlation between the population of Amiternum, the migrant populations transited and/or established in the territory of Amiternum such as Byzantines, Longobards (Lombards), which dominated the Italian peninsula between 568 and 774 AD, and the current populations of Italy. The study of haplogroups, the analysis of genetic variability and phylogenesis studies on the sequences considered show a genetic closeness between the individuals of Amiternum, the current population of central-northern Italy and the Germanic tribe of Longobards, however, also highlights genetic traits of Byzantines in some samples of Amiternum. Using the analysis of amelogenin gene fragments, we successfully determined the sex of the bone remains on all samples.

6.
Nanomaterials (Basel) ; 9(9)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514347

ABSTRACT

Several studies have provided information on environmental nanoplastic particles/debris, but the in vitro cyto-genotoxicity is still insufficiently characterized. The aim of this study is to analyze the effects of polystyrene nanoparticles (PNPs) in the Hs27 cell line. The viability of Hs27 cells was determined following exposure at different time windows and PNP concentrations. The genotoxic effects of the PNPs were evaluated by the cytokinesis-block micronucleus (CBMN) assay after exposure to PNPs. We performed ROS analysis on HS27 cells to detect reactive oxygen species at different times and treatments in the presence of PNPs alone and PNPs added to the Crocus sativus L. extract. The different parameters of the CBMN test showed DNA damage, resulting in the increased formation of micronuclei and nuclear buds. We noted a greater increase in ROS production in the short treatment times, in contrast, PNPs added to Crocus sativus showed the ability to extract, thus reducing ROS production. Finally, the SEM-EDX analysis showed a three-dimensional structure of the PNPs with an elemental composition given by C and O. This work defines PNP toxicity resulting in DNA damage and underlines the emerging problem of polystyrene nanoparticles, which extends transversely from the environment to humans; further studies are needed to clarify the internalization process.

7.
PLoS One ; 14(9): e0222044, 2019.
Article in English | MEDLINE | ID: mdl-31504054

ABSTRACT

A number of studies have shown variable grades of cytotoxicity and genotoxicity in in vitro cell cultures, laboratory animals and humans when directly exposed to particle debris generated from tires. However, no study has compared the effects of particles generated from passenger tires with the effects of particles from truck tires. The aim of this study was to investigate and relate the cyto- and genotoxic effects of different types of particles (PP, passenger tire particles vs. TP, truck tire particles) in vitro using the phagocytic cell line RAW 264.7 (mouse leukaemic monocyte macrophage cell line). The viability of RAW 264.7 cells was determined by the 3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium (MTS) assay following exposure for 4, 24 and 48 hours to different particle concentrations (10 µg / ml, 25 µg / ml, 50 µg / ml, 100 µg / ml). The effects of particles of passenger and truck tires on cell proliferation and genotoxicity were evaluated by means of the cytokinesis-block micronucleus (CBMN) assay following exposure for 24 hours to different particle concentrations (10 µg / ml, 25 µg / ml, 50 µg / ml, 100 µg / ml). In MTS assay, after 24 hours, it was found that PP induced a 30% decrease in metabolic activity at a concentration of 10 µg/ml, while TP caused reductions of 20% and 10% at concentrations of 10 µg/ml and 50 µg/ml, respectively. At 48 hours after the treatments, we observed increased metabolic activity at 50 µg/ml and 100 µg/ml for the PP while only at 50 µg/ml for the TP. The CBMN assay showed a significant increase in the number of micronuclei in the cells incubated with PP in all experimental conditions, while the cells treated with TP showed a meaningful increase only at 10 µg /ml. We utilized the TNF-α ELISA mouse test to detect the production of tumour necrosis factor-alpha (TNF-α) in RAW 264.7 cells. The effect of passenger and truck particles on TNF-α release was evaluated following exposure for 4 and 24 hours. After 4 hours of incubation, the cells treated with PP and TP at 100 µg / ml showed a slight but significant increase in TNF-α release, while there was a significant increase in the release of TNF-α after 24 hours of incubation with both tire samples in the cells treated with 50 and 100 µg / ml PP. The data obtained show a higher cytotoxic, clastogenic/genotoxic and inflammatory effects of passenger compared to the truck tire particles.


Subject(s)
Air Pollutants/toxicity , Motor Vehicles , Mutagens/toxicity , Particulate Matter/toxicity , Rubber/chemistry , Animals , Cell Survival/drug effects , Mice , RAW 264.7 Cells , Zinc Oxide/chemistry
8.
Food Chem Toxicol ; 126: 7-14, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30763684

ABSTRACT

Multiple studies revealed the potential application of high quality saffron byproducts as cheap sources of bioactive compounds endowed with antioxidant activity. In the present study, we analyzed the total fatty acids of the anthers, and explored the pharmacological and toxicological potential of anthers, by evaluating genotoxic and protective effects in multiple cell lines, brine shrimps and isolated rat tissues. The phytochemical analyses showed that anthers are rich in long chain fatty acids most of which are unsaturated (80.51%). Particularly, anther water extract revealed to be well tolerated by multiple cell lines, and able to modulate reactive oxygen species (ROS) levels, without exerting either genotoxic or cytotoxic effects. The same extract was also able to blunt lipopolysaccharide (LPS)-induced nitrite and malondialdehyde (MDA) in isolated rat tissues. On the other hand, considering the concomitant null effect on HCT116 cell migration, in wound healing experimental paradigm, our findings suggest the efficacy of water anther extract as protective agent without any direct reverting effects on lesioned tissues. Concluding, the promising results, deriving from the pharmacological and toxicological evaluations, support the valorization of saffron anthers as a strategy to optimize and develop the productive chain of Abruzzo saffron.


Subject(s)
Crocus/chemistry , Plant Extracts/administration & dosage , Protective Agents/pharmacology , Waste Products/analysis , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/toxicity , Artemia , Cell Movement/drug effects , HCT116 Cells , Humans , Male , Plant Extracts/chemistry , Plant Extracts/toxicity , Protective Agents/chemistry , Protective Agents/toxicity , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
9.
Food Res Int ; 109: 91-98, 2018 07.
Article in English | MEDLINE | ID: mdl-29803496

ABSTRACT

Saffron (Crocus sativus L.) has been previously reported to be active as a protective agent in multiple experimental models of oxidative stress, inflammation and cancer. These findings refer to the protective effects of stigmas, not byproducts such as tepals and anthers. In this context, the aims of the present work were to characterize the phytochemical profile of saffron stigmas (CST) and high quality byproducts (tepals + anthers - CTA) extracts. Additionally, we studied the antioxidant and chelating effects of CST and CTA extracts by preliminary in vitro assay. The antioxidant activity was further investigated through the evaluation of reactive oxygen species (ROS) levels and lactate dehydrogenase (LDH) activity on mouse myoblast (C2C12) and human colon cancer (HCT116) cell lines. Additionally, we evaluated CST and CTA extract treatment on cholinesterases, α-glucosidase and α-amylase activity, in vitro. Finally, we studied the effects of CST extract on malondialdehyde (MDA) level in rat colon specimens challenged with E. coli lipopolysaccharide (LPS). We observed that water CST extracts are rich in phenolic content, whereas for CTA the olive oil was the elective extraction solvent. As expected, water CST extracts were the most effective in reducing hydrogen peroxide-induced oxidative stress in both cell lines and in vitro assays. Furthermore, both CST and CTA water extracts reduced the LDH activity in HCT116 cells challenged with hydrogen peroxide and LPS-induced MDA levels in rat colon specimens. Concluding, the present findings showed protective effects exerted by CST and CTA extracts in in vitro and ex vivo models of inflammation and oxidative stress.


Subject(s)
Antioxidants , Crocus/chemistry , Enzyme Inhibitors , Plant Extracts , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flowers/chemistry , HCT116 Cells , Humans , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL