Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37039664

ABSTRACT

Single-cell ribonucleic acid sequencing (scRNA-seq) enables the quantification of gene expression at the transcriptomic level with single-cell resolution, enhancing our understanding of cellular heterogeneity. However, the excessive missing values present in scRNA-seq data hinder downstream analysis. While numerous imputation methods have been proposed to recover scRNA-seq data, high imputation performance often comes with low or no interpretability. Here, we present IGSimpute, an accurate and interpretable imputation method for recovering missing values in scRNA-seq data with an interpretable instance-wise gene selection layer (GSL). IGSimpute outperforms 12 other state-of-the-art imputation methods on 13 out of 17 datasets from different scRNA-seq technologies with the lowest mean squared error as the chosen benchmark metric. We demonstrate that IGSimpute can give unbiased estimates of the missing values compared to other methods, regardless of whether the average gene expression values are small or large. Clustering results of imputed profiles show that IGSimpute offers statistically significant improvement over other imputation methods. By taking the heart-and-aorta and the limb muscle tissues as examples, we show that IGSimpute can also denoise gene expression profiles by removing outlier entries with unexpectedly high expression values via the instance-wise GSL. We also show that genes selected by the instance-wise GSL could indicate the age of B cells from bladder fat tissue of the Tabula Muris Senis atlas. IGSimpute can impute one million cells using 64 min, and thus applicable to large datasets.


Subject(s)
Single-Cell Gene Expression Analysis , Software , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling , Transcriptome , Cluster Analysis
2.
Viruses ; 16(1)2024 01 17.
Article in English | MEDLINE | ID: mdl-38257834

ABSTRACT

Circularity confers protection to viral genomes where linearity falls short, thereby fulfilling the form follows function aphorism. However, a shift away from morphology-based classification toward the molecular and ecological classification of viruses is currently underway within the field of virology. Recent years have seen drastic changes in the International Committee on Taxonomy of Viruses' operational definitions of viruses, particularly for the tailed phages that inhabit the human gut. After the abolition of the order Caudovirales, these tailed phages are best defined as members of the class Caudoviricetes. To determine the epistemological value of genome topology in the context of the human gut virome, we designed a set of seven experiments to assay the impact of genome topology and representative viral selection on biological interpretation. Using Oxford Nanopore long reads for viral genome assembly coupled with Illumina short-read polishing, we showed that circular and linear virus genomes differ remarkably in terms of genome quality, GC skew, transfer RNA gene frequency, structural variant frequency, cross-reference functional annotation (COG, KEGG, Pfam, and TIGRfam), state-of-the-art marker-based classification, and phage-host interaction. Furthermore, the disparity profile changes during dereplication. In particular, our phage-host interaction results demonstrated that proportional abundances cannot be meaningfully compared without due regard for genome topology and dereplication threshold, which necessitates the need for standardized reporting. As a best practice guideline, we recommend that comparative studies of the human gut virome always report the ratio of circular to linear viral genomes along with the dereplication threshold so that structural and functional metrics can be placed into context when assessing biologically relevant metagenomic properties such as proportional abundance.


Subject(s)
Bacteriophages , Virome , Humans , Virome/genetics , Genome, Viral , Bacteriophages/genetics , Metagenome , Biological Assay
3.
Article in English | MEDLINE | ID: mdl-39039636

ABSTRACT

Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.

4.
Gene ; 786: 145624, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33798681

ABSTRACT

The genus Synalpheus is a cosmopolitan clade of marine shrimps found in most tropical regions. Species in this genus exhibit a range of social organizations, including pair-forming, communal breeding, and eusociality, the latter only known to have evolved within this genus in the marine realm. This study examines the complete mitochondrial genomes of seven species of Synalpheus and explores differences between eusocial and non-eusocial species considering that eusociality has been shown before to affect the strength of purifying selection in mitochondrial protein coding genes. The AT-rich mitochondrial genomes of Synalpheus range from 15,421 bp to 15,782 bp in length and comprise, invariably, 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. A 648 bp to 994 bp long intergenic space is assumed to be the D-loop. Mitochondrial gene synteny is identical among the studied shrimps. No major differences occur between eusocial and non-eusocial species in nucleotide composition and codon usage profiles of PCGs and in the secondary structure of tRNA genes. Maximum likelihood phylogenetic analysis of the complete concatenated PCG complement of 90 species supports the monophyly of the genus Synalpheus and its family Alpheidae. Moreover, the monophyletic status of the caridean families Alvinocaridae, Atyidae, Thoridae, Lysmatidae, Palaemonidae, and Pandalidae within caridean shrimps are fully or highly supported by the analysis. We therefore conclude that mitochondrial genomes contain sufficient phylogenetic information to resolve relationships at high taxonomic levels within the Caridea. Our analysis of mitochondrial genomes in the genus Synalpheus contributes to the understanding of the coevolution between genomic architecture and sociality in caridean shrimps and other marine organisms.


Subject(s)
Decapoda/classification , Genomics/methods , Mitochondria/genetics , Animals , Codon Usage , Decapoda/genetics , Genome Size , Genome, Mitochondrial , Phylogeny , RNA, Transfer/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL