Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Genes Dev ; 38(1-2): 46-69, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38286657

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Subject(s)
Head and Neck Neoplasms , Histones , Humans , Histones/metabolism , Lysine/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Methylation , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Genomic Instability/genetics
2.
Cell ; 132(5): 745-57, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18329362

ABSTRACT

Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in C. elegans, chromosome termini possess 3' G-strand overhangs as well as 5' C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that C. elegans telomere homeostasis relies on a novel mechanism that involves 5' and 3' single-stranded termini.


Subject(s)
Caenorhabditis elegans/genetics , DNA-Binding Proteins/metabolism , Telomere/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Cell Line , DNA, Helminth/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Embryo, Nonmammalian/metabolism , Humans , Structural Homology, Protein , Telomere/chemistry , Telomere/ultrastructure
3.
Nucleic Acids Res ; 49(17): 9768-9782, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34428304

ABSTRACT

Polycomb complexes have traditionally been prescribed roles as transcriptional repressors, though increasing evidence demonstrate they can also activate gene expression. However, the mechanisms underlying positive gene regulation mediated by Polycomb proteins are poorly understood. Here, we show that RING1B, a core component of Polycomb Repressive Complex 1, regulates enhancer-promoter interaction of the bona fide estrogen-activated GREB1 gene. Systematic characterization of RNA:DNA hybrid formation (R-loops), nascent transcription and RNA Pol II activity upon estrogen administration revealed a key role of RING1B in gene activation by regulating R-loop formation and RNA Pol II elongation. We also found that the estrogen receptor alpha (ERα) and RNA are both necessary for full RING1B recruitment to estrogen-activated genes. Notably, RING1B recruitment was mostly unaffected upon RNA Pol II depletion. Our findings delineate the functional interplay between RING1B, RNA and ERα to safeguard chromatin architecture perturbations required for estrogen-mediated gene regulation and highlight the crosstalk between steroid hormones and Polycomb proteins to regulate oncogenic programs.


Subject(s)
Enhancer Elements, Genetic , Estradiol/physiology , Polycomb Repressive Complex 1/metabolism , Promoter Regions, Genetic , R-Loop Structures , Transcriptional Activation , Cell Line , Chromatin/metabolism , Estrogen Receptor alpha/metabolism , Humans , RNA/metabolism
4.
Mod Pathol ; 35(9): 1220-1226, 2022 09.
Article in English | MEDLINE | ID: mdl-35322192

ABSTRACT

T- lymphoblastic leukemia/lymphoma (T-LL) is an aggressive malignancy of immature T-cells with poor overall survival (OS) and in need of new therapies. LIM-domain only 2 (LMO2) is a critical regulator of hematopoietic cell development that can be overexpressed in T-LL due to chromosomal abnormalities. Deregulated LMO2 expression contributes to T-LL development by inducing block of T-cell differentiation and continuous thymocyte self-renewal. However, LMO2 expression and its biologic significance in T-LL remain largely unknown. We analyzed LMO2 expression in 100 initial and follow-up biopsies of T-LL from 67 patients, including 31 (46%) early precursor T-cell (ETP)-ALL, 26 (39%) cortical and 10 (15%) medullary type. LMO2 expression was present in 50 (74.6%) initial biopsies with an average of 87% positive tumor cells (range 30-100%). LMO2 expression in ETP, medullary and cortical T-LLs was not statistically different. In patients with biopsies after initial therapy, LMO2 expression was stable. LMO2 expression was associated with longer OS (p = 0.048) regardless of T-lymphoblast stage or other clinicopathologic features. These findings indicate that LMO2 is a promising new prognostic marker that could predict patients' outcomes and potentially be targeted for novel chemotherapy, i.e. PARP1/2 inhibitors, which have been shown to enhance chemotherapy sensitivity in LMO2 expressing diffuse large B cell lymphoma (DLBCL) tumors by decreasing DNA repair efficiency.


Subject(s)
LIM Domain Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adaptor Proteins, Signal Transducing/genetics , Humans , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , T-Lymphocytes/pathology
5.
Blood ; 127(5): 605-15, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26603838

ABSTRACT

GLI1 oncogene has been implicated in the pathobiology of several neoplasms including diffuse large B-cell lymphoma (DLBCL). However, mechanisms underlying GLI1-increased activity in DLBCL are poorly characterized. Herein, we demonstrate that IKKß phosphorylates GLI1 in DLBCL. IKKß activation increased GLI1 protein levels and transcriptional activity, whereas IKKß silencing decreased GLI1 levels and transcriptional activity. Tumor necrosis factor-α (TNFα) mediated IKKß activation-impaired GLI1 binding with the E3 ubiquitin ligase-ITCH, leading to decreased K48-linked ubiquitination/degradation of GLI1. We found 8 IKKß-dependent phosphorylation sites that mediate GLI1 stability. Mutating or deleting these residues facilitated GLI1-ITCH interaction and decreased the protective effect of TNFα on GLI1 stability. IKKß-GLI1 crosstalk is significant because combined inhibition of both molecules resulted in synergistic suppression of DLBCL viability in vivo and in vitro. By linking IKKß-mediated nuclear factor-κB activity with GLI1, we identified a crosstalk between these 2 pathways that can inform the design of novel therapeutic strategies in DLBCL.


Subject(s)
I-kappa B Kinase/metabolism , Lymphoma, Large B-Cell, Diffuse/metabolism , Transcription Factors/metabolism , Cell Line, Tumor , Cell Survival , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , NF-kappa B/metabolism , Phosphorylation , Protein Stability , Repressor Proteins/metabolism , Transcription Factors/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Zinc Finger Protein GLI1
6.
J Immunol ; 197(7): 2930-5, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27559052

ABSTRACT

The ∼28-kb 3' regulatory region (3'RR), which is located at the most distal 3' region of the Ig H chain locus, has multiple regulatory functions that control IgH expression, class-switch recombination (CSR), and somatic hypermutation. In this article, we report that deletion of the entire 3'RR in a mouse B cell line that is capable of robust cytokine-dependent CSR to IgA results in reduced, but not abolished, CSR. These data suggest that 3'RR is not absolutely required for CSR and, thus, is not essential for targeting activation-induced cytidine deaminase to S regions, as was suggested. Moreover, replacing 3'RR with a DNA fragment including only its four DNase I hypersensitive sites (lacking the large spacer regions) restores CSR to a level equivalent to or even higher than in wild-type cells, suggesting that the four hypersensitive sites contain most of the CSR-promoting functions of 3'RR. Stimulated cells express abundant germline transcripts, with the presence or absence of 3'RR, providing evidence that 3'RR has a role in promoting CSR that is unique from enhancing S region transcription.


Subject(s)
Immunoglobulin G/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Switch Region/genetics , Animals , Cells, Cultured , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Switch Region/immunology , Mice
7.
Mod Pathol ; 30(4): 519-529, 2017 04.
Article in English | MEDLINE | ID: mdl-27982024

ABSTRACT

Epstein-Barr virus (EBV) -associated follicular lymphoma is only rarely reported. Herein, we report the largest series analyzing prevalence and clinicopathologic characteristics of EBV-associated follicular lymphoma occurring in unselected cases. Out of 382 analyzed cases, 10 EBV-positive follicular lymphomas were identified (prevalence=2.6%, 95% confidence interval 1.3-4.0%). All EBV-positive follicular lymphomas showed EBV-encoded small RNA-positive lymphoma cells present in a follicular distribution. Of these, eight also had tissue available for testing of expression of latent membrane protein 1 (LMP1), out of which six (75%) were positive. There was a significant association with grades 3A-3B follicular lymphoma (P<0.0001) and CD30 expression (P=0.0002). EBV-positive follicular lymphomas were otherwise morphologically and immunophenotypically indistinguishable from EBV-negative cases of similar grade. Nine of the EBV-positive follicular lymphomas occurred in patients with no known history of immunosuppression, while one patient had a history of hydroxychloroquine administration for Sjögren's syndrome. The mean age in the EBV-positive and -negative follicular lymphomas was 56 (range 31-83 years) and 49 years (range 25-92 years), respectively, with no statistically significant difference. Seven of the patients with EBV-positive follicular lymphoma had additional biopsies from different time points available for review, all of which showed progression of disease in the form of progression of tumor grade. Five of these progressed to diffuse large B-cell lymphoma, one of which had tissue available for testing and was EBV-positive. Our findings suggest that EBV infection may have a role in lymphomagenesis and/or disease progression in a subset of follicular lymphomas, thereby expanding the spectrum of recognized EBV-associated B-cell lymphomas.


Subject(s)
Herpesvirus 4, Human/isolation & purification , Lymphoma, Follicular/virology , Lymphoma, Large B-Cell, Diffuse/virology , Adult , Aged , Aged, 80 and over , Female , Humans , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged
8.
J Immunol ; 194(9): 4231-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25795757

ABSTRACT

Ig class switching requires cell proliferation and is division linked, but the detailed mechanism is unknown. By analyzing the first switching cells early in the kinetics, our analysis suggested that proliferating B cells had a very short G1 phase (<3.5 h), a total cell cycle time of ∼ 11 h, and that Ig class switching preferentially occurred in the late G1 or early S phase. Inhibition of cyclin-dependent kinases (CDKs) caused dramatic reduction of switching rate within 6 h. This was associated with less targeting of activation-induced cytidine deaminase (AID) to the Igh locus. Interestingly, ectopically expressed nuclear AID in HeLa cells was preferentially found in the early S phase. Furthermore, in CDK2 hypomorphic cells there was reduced nuclear AID accumulation. Thus, our data are compatible with the idea that division-linked Ig class switching is in part due to CDK2-regulated AID nuclear access at the G1/S border.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cytidine Deaminase/metabolism , Immunoglobulin Class Switching , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Cycle/genetics , Cell Line , Cyclin-Dependent Kinase 2/metabolism , DNA Replication , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Isotypes/genetics , Mice , Protein Binding , Protein Transport
9.
Proc Natl Acad Sci U S A ; 111(11): E988-97, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24591601

ABSTRACT

Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.


Subject(s)
Cytidine Deaminase/metabolism , DNA Breaks , DNA End-Joining Repair/physiology , Immunoglobulin Class Switching/genetics , Analysis of Variance , Animals , B-Lymphocytes/immunology , Blotting, Western , Cell Line , Chromatin Immunoprecipitation , DNA End-Joining Repair/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering/genetics , Translocation, Genetic/genetics , Uracil-DNA Glycosidase/genetics
10.
J Immunol ; 193(9): 4732-8, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25252954

ABSTRACT

We describe a spontaneously derived mouse line that completely failed to induce Ig class switching in vitro and in vivo. The mice inherited abolished IgG serum titers in a recessive manner caused by a spontaneous G → A transition mutation in codon 112 of the aicda gene, leading to an arginine to histidine replacement (AID(R112H)). Ig class switching was completely reconstituted by expressing wild-type AID. Mice homozygous for AID(R112H) had peripheral B cell hyperplasia and large germinal centers in the absence of Ag challenge. Immunization with SRBCs elicited an Ag-specific IgG1 response in wild-type mice, whereas AID(R112H) mice failed to produce IgG1 and had reduced somatic hypermutation. The phenotype recapitulates the human hyper-IgM (HIGM) syndrome that is caused by point mutations in the orthologous gene in humans, and the AID(R112H) mutation is frequently found in HIGM patients. The AID(R112H) mouse model for HIGM provides a powerful and more precise tool than conventional knockout strategies.


Subject(s)
Cytidine Deaminase/genetics , Disease Models, Animal , Hyper-IgM Immunodeficiency Syndrome/genetics , Hyper-IgM Immunodeficiency Syndrome/immunology , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Mutation , Somatic Hypermutation, Immunoglobulin , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Cytidine Deaminase/metabolism , DNA Mutational Analysis , Female , Germinal Center/immunology , Hyper-IgM Immunodeficiency Syndrome/metabolism , Immunophenotyping , Inheritance Patterns , Lymphocyte Count , Male , Mice , Pedigree , Phenotype , Quantitative Trait, Heritable
11.
J Immunol ; 191(11): 5751-63, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24146042

ABSTRACT

Classical nonhomologous end-joining (C-NHEJ) and alternative end-joining (A-EJ) are the main DNA double-strand break (DSB) repair pathways when a sister chromatid is not available. However, it is not clear how one pathway is chosen over the other to process a given DSB. To address this question, we studied in mouse splenic B cells and CH12F3 cells how C-NHEJ and A-EJ repair DSBs initiated by the activation-induced deaminase during IgH (Igh) class-switch recombination (CSR). We show in this study that lowering the deamination density at the Igh locus increases DSB resolution by microhomology-mediated repair while decreasing C-NHEJ activity. This process occurs without affecting 53BP1 and γH2AX levels during CSR. Mechanistically, lowering deamination density increases exonuclease I recruitment and single-stranded DNA at the Igh locus and promotes C-terminal binding protein interacting protein and MSH2-dependent DSB repair during CSR. Indeed, reducing activation-induced deaminase levels increases CSR efficiency in C-NHEJ-defective cells, suggesting enhanced use of an A-EJ pathway. Our results establish a mechanism by which C-NHEJ and this C-terminal binding protein interacting protein/MSH2-dependent pathway that relies on microhomology can act concurrently but independently to repair different types of DSBs and reveal that the density of DNA lesions influences the choice of DSB repair pathway during CSR.


Subject(s)
B-Lymphocytes/immunology , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Exodeoxyribonucleases/metabolism , Immunoglobulin Class Switching/genetics , Alcohol Oxidoreductases/metabolism , Animals , Chromosomal Proteins, Non-Histone/metabolism , Cytidine Deaminase/genetics , DNA-Binding Proteins/metabolism , Deamination/genetics , Histones/metabolism , Mice , Mice, Knockout , MutS Homolog 2 Protein/metabolism , Protein Binding , Protein Transport , Recombinational DNA Repair/genetics , Tumor Suppressor p53-Binding Protein 1
12.
Oncogene ; 43(8): 555-565, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030788

ABSTRACT

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME that can be targeted therapeutically in cancer.


Subject(s)
Melanoma , Uveal Neoplasms , Male , Humans , Melanoma/genetics , DNA Repair/genetics , DNA , Genomic Instability , Aneuploidy , Meiosis , Antigens, Neoplasm/metabolism
13.
Nature ; 447(7147): 924-31, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17581575

ABSTRACT

During the evolution of linear genomes, it became essential to protect the natural chromosome ends to prevent triggering of the DNA-damage repair machinery and enzymatic attack. Telomeres - tightly regulated complexes consisting of repetitive G-rich DNA and specialized proteins - accomplish this task. Telomeres not only conceal linear chromosome ends from detection and inappropriate repair but also provide a buffer to counteract replication-associated shortening. Lessons from many model organisms have taught us about the complications of maintaining these specialized structures. Here, we discuss how telomeres interact and cooperate with the DNA replication and DNA-damage repair machineries.


Subject(s)
DNA Replication , Telomere/genetics , Telomere/metabolism , Animals , Cellular Senescence/genetics , DNA Damage , DNA Repair , Humans , Neoplasms/genetics , Neoplasms/pathology
14.
Res Sq ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37162820

ABSTRACT

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME than can be targeted therapeutically in cancer.

15.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38076924

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.

16.
Cell Rep ; 42(1): 112027, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36848231

ABSTRACT

TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.


Subject(s)
Leukemia , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Humans , Mice , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Synthetic Lethal Mutations , Vitamins
17.
Nat Struct Mol Biol ; 29(11): 1122-1135, 2022 11.
Article in English | MEDLINE | ID: mdl-36344844

ABSTRACT

Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER+ breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway. In contrast, during temporal reprogramming towards a resistant state, CoREST is recruited to AP-1 sites. In reprogrammed cells, CoREST favors chromatin opening, cJUN binding to chromatin, and gene activation by controlling SWI/SNF recruitment independently of the demethylase activity of the CoREST subunit LSD1. Genetic and pharmacological CoREST inhibition reduces tumorigenesis and metastasis of endocrine-sensitive and endocrine-resistant xenograft models. Consistently, CoREST controls a gene signature involved in invasiveness in clinical breast tumors resistant to endocrine therapies. Our studies reveal CoREST functions that are co-opted to drive cellular plasticity and resistance to endocrine therapies and tumorigenesis, thus establishing CoREST as a potential therapeutic target for the treatment of advanced breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Nerve Tissue Proteins/metabolism , Chromatin , Carcinogenesis
18.
Front Cell Infect Microbiol ; 11: 789373, 2021.
Article in English | MEDLINE | ID: mdl-35071041

ABSTRACT

Trypanosoma cruzi infection induces a polyclonal B cell proliferative response characterized by maturation to plasma cells, excessive generation of germinal centers, and secretion of parasite-unrelated antibodies. Although traditionally reduced to the humoral response, several infectious and non-infectious models revealed that B lymphocytes could regulate and play crucial roles in cellular responses. Here, we analyze the trypomastigote-induced effect on B cells, their effects on CD4+ T cells, and their correlation with in vivo findings. The trypomastigotes were able to induce the proliferation and the production of IL-10 or IL-6 of naïve B cells in co-culture experiments. Also, we found that IL-10-producing B220lo cells were elicited in vivo. We also found up-regulated expression of FasL and PD-L1, proteins involved in apoptosis induction and inhibition of TCR signaling, and of BAFF and APRIL mRNAs, two B-cell growth factors. Interestingly, it was observed that IL-21, which plays a critical role in regulatory B cell differentiation, was significantly increased in B220+/IL-21+ in in vivo infections. This is striking since the secretion of IL-21 is associated with T helper follicular cells. Furthermore, trypomastigote-stimulated B-cell conditioned medium dramatically reduced the proliferation and increased the apoptotic rate on CD3/CD28 activated CD4+ T cells, suggesting the development of effective regulatory B cells. In this condition, CD4+ T cells showed a marked decrease in proliferation and viability with marginal IL-2 or IFNγ secretion, which is counterproductive with an efficient immune response against T. cruzi. Altogether, our results show that B lymphocytes stimulated with trypomastigotes adopt a particular phenotype that exerts a strong regulation of this T cell compartment by inducing apoptosis, arresting cell division, and affecting the developing of a proinflammatory response.


Subject(s)
Chagas Disease , Trypanosoma cruzi , B-Lymphocytes , Humans , Lymphocyte Activation , T-Lymphocytes, Helper-Inducer
19.
Cell Rep ; 37(13): 110144, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965440

ABSTRACT

Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinogenesis/pathology , Herpesvirus 8, Human/physiology , Hypoxia/physiopathology , Peptide Chain Initiation, Translational , Sarcoma, Kaposi/pathology , Virus Replication , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Humans , Sarcoma, Kaposi/genetics , Sarcoma, Kaposi/metabolism , Sarcoma, Kaposi/virology , Virus Activation
SELECTION OF CITATIONS
SEARCH DETAIL