Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Integr Environ Assess Manag ; 18(4): 863-867, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34826209

ABSTRACT

The pharmaceutical manufacturing industry, via the AMR Industry Alliance, has developed and implemented steps to help minimize the potential impact of pharmaceutical manufacturing on the spread of antimicrobial resistance (AMR). One of these steps was to publish predicted no-effect concentrations (PNECs) to serve as targets for antibiotic manufacturing wastewater effluent risk assessments aimed to help protect environmental receptors and to mitigate against the spread of antibiotic resistance. Concentrations below which adverse effects in the environment are not expected to occur (PNECs) were first published in 2018 and are updated annually. The current list now stands at 125 antibiotics; however, it is recognized that this list does not encompass all manufactured antibiotics. Therefore, a statistical evaluation of currently available data was conducted and a default PNEC of 0.05 µg/L for antibiotics in the absence of other data was derived. Integr Environ Assess Manag 2022;18:863-867. © 2022 Merck, Sanofi, Johnson & Johnson Services, Inc, F.Hoffmann-La Roche Ltd, Teva Pharmaceuticals, GlaxoSmithKline, Novartis Pharma AG, and Pfizer lnc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Anti-Bacterial Agents , Environmental Monitoring , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Hazardous Substances , Pharmaceutical Preparations , Risk Assessment
2.
Integr Environ Assess Manag ; 15(3): 312-319, 2019 May.
Article in English | MEDLINE | ID: mdl-30884149

ABSTRACT

In 2016, the United Nations declared the need for urgent action to combat the global threat of antimicrobial resistance (AMR). In support of this effort, the pharmaceutical industry has committed to measures aimed at improving the stewardship of antibiotics both within and outside the clinic. Notably, a group of companies collaborated to specifically address concerns related to antibiotic residues being discharged from manufacturing sites. In addition to developing a framework of minimum environmental expectations for antibiotic manufacturers, science-based receiving water targets were established for antibiotics discharged from manufacturing operations. This paper summarizes the holistic approach taken to derive these targets and includes previously unpublished, company-generated, environmental toxicity data.


Subject(s)
Anti-Bacterial Agents/analysis , Drug Industry , Environmental Monitoring/methods , Industrial Waste/analysis , Wastewater/analysis
3.
Environ Toxicol Chem ; 35(5): 1201-12, 2016 May.
Article in English | MEDLINE | ID: mdl-26403382

ABSTRACT

For many older pharmaceuticals, chronic aquatic toxicity data are limited. To assess risk during development, scale-up, and manufacturing processes, acute data and physicochemical properties need to be leveraged to reduce potential long-term impacts to the environment. Aquatic toxicity data were pooled from daphnid, fish, and algae studies for 102 active pharmaceutical ingredients (APIs) to evaluate the relationship between predicted no-effect concentrations (PNECs) derived from acute and chronic tests. The relationships between acute and chronic aquatic toxicity and the n-octanol/water distribution coefficient (D(OW)) were also characterized. Statistically significant but weak correlations were observed between toxicity and log D(OW), indicating that D(OW) is not the only contributor to toxicity. Both acute and chronic PNEC values could be calculated for 60 of the 102 APIs. For most compounds, PNECs derived from acute data were lower than PNECs derived from chronic data, with the exception of steroid estrogens. Seven percent of the PNECs derived from acute data were below the European Union action limit of 0.01 µg/L and all were anti-infectives affecting algal species. Eight percent of available PNECs derived from chronic data were below the European Union action limit, and fish were the most sensitive species for all but 1 API. These analyses suggest that the use of acute data may be acceptable if chronic data are unavailable, unless specific mode of action concerns suggest otherwise.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Water Pollutants, Chemical/toxicity , 1-Octanol/chemistry , Animals , Chlorophyta/drug effects , Cyanobacteria/drug effects , Daphnia/drug effects , Fishes , Risk Assessment , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL