ABSTRACT
The transmission of signals to the cell body from injured axons induces significant alterations in primary sensory neurons located in the ganglion tissue, the site of the perikaryon of the affected nerve fibers. Disruption of the continuity between the proximal and distal ends leads to substantial adaptability in ganglion cells and induces macrophage-like activity in the satellite cells. Research findings have demonstrated the plasticity of satellite cells following injury. Satellite cells work together with sensory neurons to extend the interconnected surface area in order to permit effective communication. The dynamic cellular environment within the ganglion undergoes several alterations that ultimately lead to differentiation, transformation, or cell death. In addition to necrotic and apoptotic cell morphology, phenomena such as histomorphometric alterations, including the development of autophagic vacuoles, chromatolysis, cytosolic degeneration, and other changes, are frequently observed in cells following injury. The use of electron microscopic and stereological techniques for assessing ganglia and nerve fibers is considered a gold standard in terms of investigating neuropathic pain models, regenerative therapies, some treatment methods, and quantifying the outcomes of pharmacological and bioengineering interventions. Stereological techniques provide observer-independent and reliable results, which are particularly useful in the quantitative assessment of three-dimensional structures from two-dimensional images. Employing the fractionator and disector techniques within stereological methodologies yields unbiased data when assessing parameters such as number. The fundamental concept underlying these methodologies involves ensuring that each part of the structure under evaluation has an equal opportunity of being sampled. This review describes the stereological and histomorphometric evaluation of dorsal root ganglion neurons and satellite cells following nerve injury models.
Subject(s)
Neurons , Peripheral Nerve Injuries , Rats , Animals , Sciatic Nerve/injuries , Microscopy, Electron , Neuronal Plasticity/physiologyABSTRACT
Taeniosis and cysticercosis are infections caused by cestodes, Taenia solium is among them. T.solium neurocysticercosis accounts for 30% of acquired epilepsy in human in developing countries. This study was carried out to determine the prevalence of cysticercosis among domestic pigs in Mbulu district following deworming intervention. The study was conducted among three rural communities monitoring community intervention in Mbulu district between March 2020 and September 2021. Live pigs were diagnosed by lingual examination for the presence of T. solium cysticerci, and pig-rearing practices were recorded. Logistic regression was performed to determine the role of risk factors on pig infection outcome. We conveniently sampled 510 pigs; 267 (52.4%) were sampled in the year 2020 and 243 (47.6%) in 2021. All pigs were examined by lingual examination for the presence of pork tapeworm larvae, and 43 (8.4%) pigs were found to be infected. Twenty-one (48.8%) of the infected pigs were males and 22 (51.2%) were females, and the overall annual prevalence of tapeworm larvae was 9% and 7.8% for 2020 and 2021, respectively. The pigs were twice more likely to be found infected during the rainy season compared to the dry season in 2020 (OR = 2.27, 95%CI of 1.16-7.22). The reported pig-rearing practices were free-range, penned, and tethered, 141 (52.8%), 64 (24%), and 62 (23.2%), respectively. Of the 94 visited households in 2020, 78 (83%) reported drinking water without boiling, and 59 (62.8%) household leaders reported having heard about taeniosis/cysticercosis. The prevalence of cysticercosis among domestic pigs in this study was high, with seasonal variations. Despite the ongoing national school deworming and community deworming program, there was no significant change in the prevalence of cysticercosis over two consecutive years. The reported pig infections imply fecal-oral transmission with humans tapeworm eggs released from infected humans. Most households reported consuming unboiled drinking water that might be contaminated. Integrating pig vaccination and deworming, health education and school or community deworming along with improved pig management practice and general community water sanitation hygiene (WASH) are recommended to reduce the burden of pork tapeworm in the study communities.
ABSTRACT
INTRODUCTION: Diagnosis is a key step towards the provision of medical intervention and saving lives. However, in low- and middle-income countries, diagnostic services are mainly centralized in large cities and are costly. Point of care (POC) diagnostic technologies have been developed to fill the diagnostic gap for remote areas. The linkage of POC testing onto smartphones has leveraged the ever-expanding coverage of mobile phones to enhance health services in low- and middle-income countries. Tanzania, like most other middle-income countries, is poised to adopt and deploy the use of mobile phone-enabled diagnostic devices. However, there is limited information on the situation on the ground with regard to readiness and capabilities of the veterinary and medical professionals to make use of this technology. METHODS: In this study we survey awareness, digital literacy and prevalent health condition to focus on in Tanzania to guide development and future implementation of mobile phoned-enable diagnostic tools by veterinary and medical professionals. Data was collected using semi-structured questionnaire with closed and open-ended questions, guided in-depth interviews and focus group discussion administered to the participants after informed consent was obtained. RESULTS: A total of 305 participants from six regions of Tanzania were recruited in the study. The distribution of participants across the six regions was as follows: Kilimanjaro (37), Arusha (31), Tabora (68), Dodoma (61), Mwanza (58), and Iringa (50). Our analysis reveals that only 48.2% (126/255) of participants demonstrated significant awareness of mobile phone-enabled diagnostics. This awareness varies significantly across age groups, professions and geographical locations. Interestingly, while 97.4% of participants own and can operate a smartphone, 62% have never utilized their smartphones for health services, including disease diagnosis. Regarding prevalent health condition to focus on when developing mobile phone -enabled diagnostics tools for Tanzania; there was disparity between medical and veterinary professionals. For medical professionals the top 4 priority diseases were Malaria, Urinary Tract Infections, HIV and Diabetes, while for veterinary professionals they were Brucellosis, Anthrax, Newcastle disease and Rabies. DISCUSSION: Despite the widespread ownership of smartphones among healthcare providers (both human and animal), only a small proportion have utilized these devices for healthcare practices, with none reported for diagnostic purposes. This limited utilization may be attributed to factors such as a lack of awareness, absence of policy guidelines, limited promotion, challenges related to mobile data connectivity, and adherence to cultural practices. CONCLUSION: The majority of medical and veterinary professionals in Tanzania possess the necessary digital literacy to utilize mobile phone-enabled diagnostics and demonstrate readiness to adopt digital technologies and innovations to enhance diagnosis. However, effective implementation will require targeted training and interventions to empower them to effectively apply such innovations for disease diagnosis and other healthcare applications.
ABSTRACT
Introduction: brain atrophy is the reduction of brain volume often accompanied with cognitive changes. Despite the availability of computerized-tomography (CT) scanners in Tanzania, little is known about the magnitude of brain atrophy, its associated confusion state and the risk factors in adults. This study aimed to fill those knowledge gaps. Methods: a retrospective cross-sectional hospital-based survey was conducted in northern Tanzania using a sample size of 384 CT images of adults who underwent brain CT scans in three referral hospitals. CT images were evaluated using a diagonal brain fraction (DBF) method to determine the presence of brain atrophy. Data for other covariates were also collected. Results: we report a prevalence of 60.67% for brain atrophy and 35% for the associated confusion state. Association between confusion state and brain atrophy was statistically significant (χ2 = 21.954, p<0.001). Brain atrophy was prognosticated by: age (adjusted OR: 1.11; 95% CI [1.05, 1.20], p<0.001), smoking (adjusted OR: 6.97; 95% CI [2.12, 26.19], p<0.001), alcohol-consumption (adjusted OR: 11.87; 95% CI [3.44, 40.81], p<0.001), hypertension (adjusted OR: 61.21; 95 CI [15.20, 349.43], p<0.001), type-2 diabetes mellitus (adjusted OR: 15.67; 95% CI [5.32, 52.77], p<0.001) and white matter demyelination (adjusted OR: 13.45; 95% CI [4.66, 44.25], p<0.001). Conclusion: there is high prevalence of brain atrophy and associated confusion state among hospitalized adults in northern Tanzania. Reported prognostic factors for brain atrophy such as age, smoking, alcohol consumption, hypertension, type-2 diabetes mellitus and white matter demyelination could help focus interventions in this area.
Subject(s)
Central Nervous System Diseases , Demyelinating Diseases , Diabetes Mellitus, Type 2 , Hypertension , Humans , Adult , Retrospective Studies , Prevalence , Tanzania/epidemiology , Cross-Sectional Studies , Risk Factors , Brain/diagnostic imaging , Brain/pathology , Diabetes Mellitus, Type 2/pathology , Hypertension/epidemiology , Central Nervous System Diseases/pathology , Atrophy/epidemiology , Atrophy/pathology , Demyelinating Diseases/pathology , Magnetic Resonance ImagingABSTRACT
BACKGROUND: The brain volume loss also known as brain atrophy is increasingly observed among children in the course of performing neuroimaging using CT scan and MRI brains. While severe forms of brain volume loss are frequently associated with neurocognitive changes due to effects on thought processing speed, reasoning and memory of children that eventually alter their general personality, most clinicians embark themselves in managing the neurological manifestations of brain atrophy in childhood and less is known regarding the offending factors responsible for developing pre-senile brain atrophy. It was therefore the goal of this study to explore the factors that drive the occurrence of childhood brain volume under the guidance of brain CT scan quantitative evaluation. METHODS: This study was a case-control study involving 168 subjects with brain atrophy who were compared with 168 age and gender matched control subjects with normal brains on CT scan under the age of 18 years. All the children with brain CT scan were subjected to an intense review of their birth and medical history including laboratory investigation reports. RESULTS: Results showed significant and influential risk factors for brain atrophy in varying trends among children including age between 14-17(OR = 1.1), male gender (OR = 1.9), birth outside facility (OR = 0.99), immaturity (OR = 1.04), malnutrition (OR = 0.97), head trauma (OR = 1.02), maternal alcoholism (OR = 1.0), antiepileptic drugs & convulsive disorders (OR = 1.0), radiation injury (OR = 1.06), space occupying lesions and ICP (OR = 1.01) and birth injury/asphyxia (OR = 1.02). CONCLUSIONS: Pathological reduction of brain volume in childhood exhibits a steady trend with the increase in pediatric age, with space occupying lesions & intracranial pressure being the most profound causes of brain atrophy.
Subject(s)
Brain , Craniocerebral Trauma , Humans , Male , Child , Adolescent , Case-Control Studies , Brain/diagnostic imaging , Brain/pathology , Craniocerebral Trauma/pathology , Atrophy/pathology , PediatriciansABSTRACT
Introduction: application of Insect Growth Regulator (IGR) such as pyriproxyfen has shown a promising result in controlling malaria transmitting mosquitoes through autodissemination technique. Novaluron that inhibits the chitin development at mosquito larval stage present a promising candidate IGR for rotation with pyriproxyfen to prevent a chance of resistance development. This study assessed the susceptibility of immature stages of Anopheles arabiensis, Anopheles gambiae and Anopheles funestus to novaluron. Methods: susceptibility bioassays using technical grade novaluron (98% active ingredient) were performed inside the semi-field system using first instar larvae of Anopheles species. For each tested species, a total of 1500 larvae were used in the bioassay. Concentration range of 0.01 mg/l to 2 mg/l of novaluron were tested to establish Lethal Concentration (LC) sufficient to kills 50%, 90% and 99% of the exposed larvae by using log-dose response analysis. Results: of the tested mosquitoes, Anopheles gambiae were highly susceptible to novaluron followed by An. Arabiensis and then An. funestus. Lethal concentrations, LC50, LC90 and LC99 (95%CI) in mg/l for An. gambiae were 0.018, 0.332 and 2.001 respectively. For An. arabiensis were 0.026, 0.546 and 2.013; and for An. funestus were 0.032, 1.00 and 5.580. High larval mortality was recorded at high concentration (2mg/L), with 80% mortality within 3 days post exposure. Conclusion: the study demonstrates the efficacy of novaluron in controlling Anopheles mosquito species at immature stages via larval mortality. These findings warrant further testing of novaluron for autodissemination by different vector species for its inclusion in rotation to prevent development of resistance.
Subject(s)
Anopheles , Malaria , Animals , Humans , Juvenile Hormones/pharmacology , Larva , Malaria/prevention & control , Mosquito Vectors , Phenylurea Compounds , TanzaniaABSTRACT
BACKGROUND: Monitoring the biological attributes of mosquitoes is critical for understanding pathogen transmission and estimating the impacts of vector control interventions on the survival of vector species. Infrared spectroscopy and machine learning techniques are increasingly being tested for this purpose and have been proven to accurately predict the age, species, blood-meal sources, and pathogen infections in Anopheles and Aedes mosquitoes. However, as these techniques are still in early-stage implementation, there are no standardized procedures for handling samples prior to the infrared scanning. This study investigated the effects of different preservation methods and storage duration on the performance of mid-infrared spectroscopy for age-grading females of the malaria vector, Anopheles arabiensis. METHODS: Laboratory-reared An. arabiensis (N = 3681) were collected at 5 and 17 days post-emergence, killed with ethanol, and then preserved using silica desiccant at 5 °C, freezing at - 20 °C, or absolute ethanol at room temperature. For each preservation method, the mosquitoes were divided into three groups, stored for 1, 4, or 8 weeks, and then scanned using a mid-infrared spectrometer. Supervised machine learning classifiers were trained with the infrared spectra, and the support vector machine (SVM) emerged as the best model for predicting the mosquito ages. RESULTS: The model trained using silica-preserved mosquitoes achieved 95% accuracy when predicting the ages of other silica-preserved mosquitoes, but declined to 72% and 66% when age-classifying mosquitoes preserved using ethanol and freezing, respectively. Prediction accuracies of models trained on samples preserved in ethanol and freezing also reduced when these models were applied to samples preserved by other methods. Similarly, models trained on 1-week stored samples had declining accuracies of 97%, 83%, and 72% when predicting the ages of mosquitoes stored for 1, 4, or 8 weeks respectively. CONCLUSIONS: When using mid-infrared spectroscopy and supervised machine learning to age-grade mosquitoes, the highest accuracies are achieved when the training and test samples are preserved in the same way and stored for similar durations. However, when the test and training samples were handled differently, the classification accuracies declined significantly. Protocols for infrared-based entomological studies should therefore emphasize standardized sample-handling procedures and possibly additional statistical procedures such as transfer learning for greater accuracy.
Subject(s)
Anopheles , Malaria , Animals , Ethanol , Female , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Silicon Dioxide , Spectroscopy, Near-Infrared/methodsABSTRACT
Introduction: naturally acquired blood-stage malaria antibodies and malaria clinical data have been reported to be useful in monitoring malaria change over time and as a marker of malaria exposure. This study assessed the total immunoglobulin G (IgG) levels to Plasmodium falciparum schizont among infants (5-17 months), estimated malaria incidence using routine health facility-based surveillance data and predicted trend relation between anti-schizont antibodies and malaria incidence in Bagamoyo. Methods: 252 serum samples were used for assessment of total IgG by enzyme-linked immunosorbent assay and results were expressed in arbitrary units (AU). 147/252 samples were collected in 2021 during a blood-stage malaria vaccine trial [ClinicalTrials.gov NCT04318002], and 105/252 were archived samples of malaria vaccine trial conducted in 2012 [ClinicalTrials.gov NCT00866619]. Malaria incidence was calculated from outpatient clinic data of malaria rapid test or blood smear positive results retrieved from District-Health-Information-Software-2 (DHIS2) between 2013 and 2020. Cross-sectional data from both studies were analysed using STATA version 14. Results: this study demonstrated a decline in total anti-schizont IgG levels from 490.21AU in 2012 to 97.07AU in 2021 which was related to a fall in incidence from 58.25 cases/1000 person-year in 2013 to 14.28 cases/1000 person-year in 2020. We also observed a significant difference in incidence when comparing high and low malaria transmission areas and by gender. However, we did not observe differences when comparing total anti-schizont antibodies by gender and study year. Conclusion: total anti-schizont antibody levels appear to be an important serological marker of exposure for assessing the dynamic of malaria transmission in infants living in malaria-endemic regions.
Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Infant , Humans , Malaria, Falciparum/epidemiology , Tanzania/epidemiology , Cross-Sectional Studies , Immunoglobulin G , Antibodies, Protozoan , Plasmodium falciparum , Malaria/epidemiologyABSTRACT
Natural products have served human life as medications for centuries. During the outbreak of COVID-19, a number of naturally derived compounds and extracts have been tested or used as potential remedies against COVID-19. Tetradenia riparia extract is one of the plant extracts that have been deployed and claimed to manage and control COVID-19 by some communities in Tanzania and other African countries. The active compounds isolated from T. riparia are known to possess various biological properties including antimalarial and antiviral. However, the underlying mechanism of the active compounds against SARS-CoV-2 remains unknown. Results in the present work have been interpreted from the view point of computational methods including molecular dynamics, free energy methods, and metadynamics to establish the related mechanism of action. Among the constituents of T. riparia studied, luteolin inhibited viral cell entry and was thermodynamically stable. The title compound exhibit residence time and unbinding kinetics of 68.86 ms and 0.014 /ms, respectively. The findings suggest that luteolin could be potent blocker of SARS-CoV-2 cell entry. The study shades lights towards identification of bioactive constituents from T. riparia against COVID-19, and thus bioassay can be carried out to further validate such observations.
Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Luteolin/pharmacology , Molecular Dynamics Simulation , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Binding Sites , COVID-19/virology , Host-Pathogen Interactions , Humans , Kinetics , Lamiaceae/chemistry , Luteolin/isolation & purification , Luteolin/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Protein Binding , Protein Conformation , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
The recent outbreak of SARS-CoV-2 is responsible for high morbidity and mortality rate across the globe. This requires an urgent identification of drugs and other interventions to overcome this pandemic. Computational drug repurposing represents an alternative approach to provide a more effective approach in search for COVID-19 drugs. Selected natural product known to have antiviral activities were screened, and based on their hits; a similarity search with FDA approved drugs was performed using computational methods. Obtained drugs from similarity search were assessed for their stability and inhibition against SARS-CoV-2 targets. Diosmin (DB08995) was found to be a promising drug that works with two distinct mechanisms, preventing viral replication and viral fusion into the host cell. Isoquercetin (DB12665) and rutin (DB01698) work by inhibiting viral replication and preventing cell entry, respectively. Our analysis based on molecular dynamics simulation and MM-PBSA binding free energy calculation suggests that diosmin, isoquercetin, rutin and other similar flavone glycosides could serve as SARS-CoV-2 inhibitor, hence an alternative solution to treat COVID-19 upon further clinical validation.
Subject(s)
Biological Products , COVID-19 , Pharmaceutical Preparations , Antiviral Agents/pharmacology , Biological Products/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2ABSTRACT
BACKGROUND: Rift Valley Fever virus (RVFV) is a zoonotic arbovirus of public health impact infecting livestock, wildlife, and humans mainly in Africa and other parts of the world. Despite its public health importance, mechanisms of RVFV maintenance during interepidemic periods (IEPS) remain unclear. OBJECTIVE: We aimed to examine comparatively exposure to RVFV between humans and goats and RVFV infection between humans, goats and mosquitoes. METHODS: A cross sectional study was performed in the Lower Moshi area of the Kilimanjaro region from March to June 2020. RVFV exposure was determined by detecting IgG/IgM to RVFV using a competitive enzyme linked immunosorbent assay whereas infection was determined by real time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS: Results show that the male gender was related to RVFV seropositivity (χ2 = 5.351; p=0.030). Being 50 years and above was related to seropositivity (χ2 =14.430; p=0.006) whereas bed net use, larger numbers of persons living in the same house (>7 persons) and RVFV seropositivity in goats were related to higher seropositivity to RVFV among humans χ2 =6.003; p=0.021, χ2 =23.213; p < 0.001 and χ2 =27.053; p < 0.001), respectively. By the use of RT-qPCR, goats exhibited the highest RVFV infection rate of 4.1%, followed by humans (2.6%), Ae. aegypti (2.3%), and Cx. pipiens complex(1.5%). Likewise, a higher proportion of goats (23.3%) were RVFV seropositive as compared with humans (13.2%). CONCLUSION: Our findings suggest the Lower Moshi area as a potential hotspot for Rift Valley Fever (RVF), posing the danger of being a source of RVFV spread to other areas. Goats had the highest infection rate, suggesting goats as important hosts for virus maintenance during IEPs. We recommend the implementation of strategies that will warrant active RVF surveillance through the identification of RVF hotspots for targeted control of the disease.
Subject(s)
Epidemics , Rift Valley Fever , Rift Valley fever virus , Animals , Antibodies, Viral , Cross-Sectional Studies , Humans , Male , Rift Valley Fever/epidemiology , Seroepidemiologic Studies , Tanzania/epidemiologyABSTRACT
INTRODUCTION: The loss of parenchymal brain volume per normative age comparison is a distinctive feature of brain atrophy. While the condition is the most prevalent to elderly, it has also been observed in pediatric ages. Various causes such as trauma, infection, and malnutrition have been reported to trigger the loss of brain tissues volume. Despite this literature based knowledge of risk factors, the magnitude of brain atrophy in pediatric age group is scantly addressed in most developing countries including Tanzania. The current study aims to understand the magnitude of brain atrophy in children residing in Northern Zone, Tanzania. METHODS: A cross-sectional hospital survey was performed in which 455 children who were presented with various brain pathologies from the year 2013 to 2019 and whose brains examined by Computerized tomography (CT)-Scanners were recruited in the study. The brain statuses were examined using three linear radiological methods including the measure of sulcal-width, Evans index, and lateral ventricular body width. RESULTS: Results showed a significant number of atrophied brains among children in Northern Tanzania and that the condition was observed to have a 1:1 male to female ratio. The prevalence of pediatric brain atrophy was found to be 16.04%. CONCLUSION: The cortical subtype of brain atrophy presented as the most prevalent type of brain volume loss. The findings of this study suggest existence of considerable trends of brain atrophy in children which need special attention and mitigation plans.
Subject(s)
Brain Diseases/diagnostic imaging , Brain/diagnostic imaging , Tomography, X-Ray Computed , Adolescent , Atrophy/diagnostic imaging , Brain/pathology , Brain Diseases/pathology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Neuroimaging/methods , Sex Distribution , TanzaniaABSTRACT
A novel tantalum pentoxide nanoparticle-electrochemically reduced graphene oxide nanocomposite-modified glassy carbon electrode (Ta2O5-ErGO/GCE) was developed for the detection of oxytetracycline in milk. The composition, structure and morphology of GO, Ta2O5, and Ta2O5-ErGO were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Oxytetracycline electrochemical behavior on the bare GCE, GO/GCE, ErGO/GCE, and Ta2O5-ErGO/GCE was studied by cyclic voltammetry. The voltammetric conditions (including scan rate, pH, deposition potential, and deposition time) were systematically optimized. With the spacious electrochemical active area, the Ta2O5-ErGO/GCE showed a great magnification of the oxidation signal of oxytetracycline, while that of the other electrodes (GCE, GO/GCE, ErGO/GCE) could not reach the same level. Under the optimum conditions, the currents were proportional to the oxytetracycline concentration in the range from 0.2 to 10 µM, and a low detection limit of 0.095 µM (S/N = 3) was detectable. Moreover, the proposed Ta2O5-ErGO/GCE performed practically with satisfactory results. The preparation of Ta2O5-ErGO/GCE in the current work provides a minor outlook of detecting trace oxytetracycline in milk.
Subject(s)
Anti-Bacterial Agents/analysis , Graphite/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Oxytetracycline/analysis , Tantalum/chemistry , Animals , Electrochemical Techniques/methods , Food Analysis/methods , Limit of Detection , Milk/chemistry , Nanoparticles/ultrastructureABSTRACT
Music is used in healthcare to promote physical and psychological well-being. As clinical applications of music continue to expand, there is a growing need to understand the biological mechanisms by which music influences health. Here we explore the neurochemistry and social flow of group singing. Four participants from a vocal jazz ensemble were conveniently sampled to sing together in two separate performances: pre-composed and improvised. Concentrations of plasma oxytocin and adrenocorticotropic hormone (ACTH) were measured before and after each singing condition to assess levels of social affiliation, engagement and arousal. A validated assessment of flow state was administered after each singing condition to assess participants' absorption in the task. The feasibility of the research methods were assessed and initial neurochemical data was generated on group singing. Mean scores of the flow state scale indicated that participants experienced flow in both the pre-composed (M = 37.06) and improvised singing conditions (M = 34.25), with no significant difference between conditions. ACTH concentrations decreased in both conditions, significantly so in the pre-composed singing condition, which may have contributed to the social flow experience. Mean plasma oxytocin levels increased only in response to improvised singing, with no significant difference between improvised and pre-composed singing conditions observed. The results indicate that group singing reduces stress and arousal, as measured by ACTH, and induces social flow in participants. The effects of pre-composed and improvised group singing on oxytocin are less clear. Higher levels of plasma oxytocin in the improvised condition may perhaps be attributed to the social effects of improvising musically with others. Further research with a larger sample size is warranted.
ABSTRACT
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.
Subject(s)
Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Electric Stimulation , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Acetylcholine/metabolism , Animals , Bungarotoxins/pharmacology , Cell Line , Cholinergic Antagonists/pharmacology , Culture Media, Conditioned/metabolism , Electric Stimulation/methods , Enzyme-Linked Immunosorbent Assay , Mice , Receptors, Cholinergic/metabolism , Voltage-Gated Sodium Channels/metabolismABSTRACT
Glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent survival factor for both central and peripheral neurons. GDNF has been shown to be a potent survival factor for motor neurons during programmed cell death and continuous treatment with GDNF maintains hyperinnervation of skeletal muscle in adulthood. However, little is known about factors regulating normal production of endogenous GDNF in skeletal muscle. This study aimed to examine the role that motor neurons play in regulating GDNF secretion by skeletal muscle. A co-culture of skeletal muscle cells (C2C12) and cholinergic neurons, glioma×neuroblastoma hybrid cells (NG108-15) were used to create nerve-muscle interactions in vitro. Acetylcholine receptors (AChRs) on nerve-myotube co-cultures were blocked with alpha-bungarotoxin (α-BTX). GDNF protein content in cells and in culture medium was analyzed by enzyme-linked immunosorbant assay (ELISA) and western blotting. GDNF localization was examined by immunocytochemistry. The nerve-muscle co-culture study indicated that the addition of motor neurons to skeletal muscle cells reduced the secretion of GDNF by skeletal muscle. The results also showed that blocking AChRs with α-BTX reversed the action of neural cells on GDNF secretion by skeletal muscle. Although ELISA results showed no GDNF in differentiated NG108-15 cells grown alone, immunocytochemical analysis showed that GDNF was localized in NG108-15 cells co-cultured with C2C12 myotubes. These results suggest that motor neurons may be regulating their own supply of GDNF secreted by skeletal muscle and that activation of AChRs may be involved in this process.