Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 77(1): 82-94.e4, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31630970

ABSTRACT

FUS is a nuclear RNA-binding protein, and its cytoplasmic aggregation is a pathogenic signature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It remains unknown how the FUS-RNA interactions contribute to phase separation and whether its phase behavior is affected by ALS-linked mutations. Here we demonstrate that wild-type FUS binds single-stranded RNA stoichiometrically in a length-dependent manner and that multimers induce highly dynamic interactions with RNA, giving rise to small and fluid condensates. In contrast, mutations in arginine display a severely altered conformation, static binding to RNA, and formation of large condensates, signifying the role of arginine in driving proper RNA interaction. Glycine mutations undergo rapid loss of fluidity, emphasizing the role of glycine in promoting fluidity. Strikingly, the nuclear import receptor Karyopherin-ß2 reverses the mutant defects and recovers the wild-type FUS behavior. We reveal two distinct mechanisms underpinning potentially disparate pathogenic pathways of ALS-linked FUS mutants.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Mutation/genetics , RNA-Binding Protein FUS/genetics , RNA/genetics , Active Transport, Cell Nucleus/genetics , Glycine/genetics , Humans
2.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39007366

ABSTRACT

Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.


Subject(s)
Cell Differentiation , Drosophila Proteins , Drosophila melanogaster , Germ Cells , Histone-Lysine N-Methyltransferase , Signal Transduction , Animals , Male , Cell Differentiation/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Signal Transduction/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Germ Cells/metabolism , Germ Cells/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Stem Cells/metabolism , Stem Cells/cytology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Janus Kinases/metabolism , Janus Kinases/genetics , Cell Proliferation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental
3.
Dev Biol ; 473: 105-118, 2021 05.
Article in English | MEDLINE | ID: mdl-33610541

ABSTRACT

Gametogenesis is one of the most extreme cellular differentiation processes that takes place in Drosophila male and female germlines. This process begins at the germline stem cell, which undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to eventually produce haploid gametes. Research in molecular genetics and cellular biology are beginning to take advantage of the continually advancing genomic tools to understand: (1) how germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) undergo differentiation in a balanced manner. In this review, we focus on the epigenetic mechanisms that address these two questions through their regulation of germline-soma communication to ensure germline stem cell identity and activity.


Subject(s)
Adult Germline Stem Cells/physiology , Cell Differentiation/genetics , Gametogenesis/genetics , Adult Germline Stem Cells/metabolism , Animals , Asymmetric Cell Division , Drosophila/embryology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epigenesis, Genetic/genetics , Epigenomics/methods , Gametogenesis/physiology , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Germ Cells/metabolism , Stem Cells/cytology
4.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405894

ABSTRACT

Many cell types come from tissue-specific adult stem cells that maintain the balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase, Set1, regulates early-stage male germ cell proliferation and differentiation in Drosophila. Early-stage germline-specific knockdown of set1 results in a temporally progressed defects, arising as germ cell loss and developing to overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage in a non-cell-autonomous manner. Additionally, wild-type Set1, but not the catalytically inactive Set1, could rescue the set1 knockdown phenotypes, highlighting the functional importance of the methyl-transferase activity of the Set1 enzyme. Further, RNA-seq experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene stat92E and the BMP pathway gene mad, that are upregulated upon set1 knockdown. Genetic interaction assays support the functional relationships between set1 and JAK-STAT or BMP pathways, as mutations of both the stat92E and mad genes suppress the set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The germ cell loss followed by over-proliferation phenotypes when inhibiting a histone methyl-transferase raise concerns about using their inhibitors in cancer therapy.

5.
Annu Rev Biophys ; 49: 247-265, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32040349

ABSTRACT

Liquid-liquid phase separation is emerging as the universal mechanism by which membraneless cellular granules form. Despite many previous studies on condensation of intrinsically disordered proteins and low complexity domains, we lack understanding about the role of RNA, which is the essential component of all ribonucleoprotein (RNP) granules. RNA, as an anionic polymer, is inherently an excellent platform for achieving multivalency and can accommodate many RNA binding proteins. Recent findings have highlighted the diverse function of RNA in tuning phase-separation propensity up or down, altering viscoelastic properties and thereby driving immiscibility between different condensates. In addition to contributing to the biophysical properties of droplets, RNA is a functionally critical constituent that defines the identity of cellular condensates and controls the temporal and spatial distribution of specific RNP granules. In this review, we summarize what we have learned so far about such roles of RNA in the context of in vitro and in vivo studies.


Subject(s)
RNA/chemistry , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL