Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Environ Res ; 250: 118537, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38408627

ABSTRACT

E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 µg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.


Subject(s)
Dust , Electronic Waste , Halogenated Diphenyl Ethers , Occupational Exposure , Polychlorinated Biphenyls , Recycling , Humans , Dust/analysis , Occupational Exposure/analysis , Europe , Electronic Waste/analysis , Halogenated Diphenyl Ethers/blood , Halogenated Diphenyl Ethers/analysis , Adult , Male , Middle Aged , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/analysis , Female , Persistent Organic Pollutants/blood , Silicones , Environmental Monitoring/methods
2.
Occup Environ Med ; 80(6): 353-360, 2023 06.
Article in English | MEDLINE | ID: mdl-37012046

ABSTRACT

OBJECTIVES: Active duty Navy military personnel are prone to vitamin D deficiency due to an occupational environment detrimental to sunlight exposure. The main objective of this systematic review is to provide a worldwide overview of vitamin D status in this population. METHODS: The Condition, Context, Population (CoCoPop) mnemonic was used to define the inclusion criteria (vitamin D status; all contexts; active duty Navy military personnel). Studies with recruits or veterans were excluded. Scopus, Web of Science and PubMed/Medline databases were searched from inception to 30 June 2022. Joanna Briggs Institute and Downs & Black checklists were used for quality assessment and data were synthesised in narrative and tabular formats. RESULTS: Thirteen studies published between 1975 and 2022 and conducted in northern hemisphere Navies, including mainly young and male service members, were included. The prevalence of vitamin D deficiency was globally reported as significant. Nine studies included a total of 305 male submariners who performed 30-92 days submarine patrol and reported the effect of sunlight deprivation in the decrease of vitamin D levels. CONCLUSIONS: This new systematic review underlines the high prevalence of vitamin D deficiency in the Navy, especially in submariners, and the need to implement measures to prevent vitamin D deficiency. Serum 25(OH)D data available and the heterogeneity of the studies limited a pooled analysis. Most studies included only submariners, which may limit generalisability to all active duty Navy military personnel. Further research on this topic should be promoted. PROSPERO REGISTRATION NUMBER: CRD42022287057.


Subject(s)
Military Personnel , Veterans , Vitamin D Deficiency , Humans , Male , Vitamin D , Vitamins , Vitamin D Deficiency/epidemiology
3.
Environ Res ; 228: 115797, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37001847

ABSTRACT

BACKGROUND: Exposure to hexavalent chromium [Cr(VI)] occurs widely in occupational settings across the EU and is associated with lung cancer. In 2025, the occupational exposure limit is set to change to 5 µg/m3. Current exposure limits are higher, with 10 µg/m3 as a general limit and 25 µg/m3 for the welding industry. We aimed to assess the current burden of lung cancer caused by occupational exposure to Cr(VI) and to evaluate the impact of the recently established EU regulation by analysing different occupational exposure limits. METHODS: Data were extracted from the literature, the Global Burden of Disease 2019) study, and Eurostat. We estimated the cases of cancer attributable to workplace exposure to Cr(VI) by combining exposure-effect relationships with exposure data, and calculated related DALYs and health costs in scenarios with different occupational exposure limits. RESULTS: With current EU regulations, 253 cases (95%UI 250.96-255.71) of lung cancer were estimated to be caused by Cr(VI) in 2019, resulting in 4684 DALYs (95%UI 4683.57-4704.08). In case the welding industry adopted 10 µg/m3, a decrease of 43 cases and 797 DALYs from current values is expected. The predicted application of a 5 µg/m3 limit would cause a decrease of 148 cases and 2746 DALYs. Current costs are estimated to amount to 12.47 million euros/year (95%UI 10.19-453.82), corresponding to 39.97 million euros (95%UI 22.75-70.10) when considering costs per DALY. The limits implemented in 2025 would lead to a decrease of 23.35 million euros when considering DALYs, with benefits of introducing a limit value occurring after many decades. Adopting a 1 µg/m3 limit would lower costs to 1.04 million euros (95%UI 0.85-37.67) and to 3.33 million euros for DALYs (95%UI 1.89-5.84). DISCUSSION: Assessing different scenarios with different Cr(VI) occupational exposure limits allowed to understand the impact of EU regulatory actions. These findings make a strong case for adapting even stricter exposure limits to protect workers' health and avoid associated costs.


Subject(s)
Lung Neoplasms , Occupational Exposure , Humans , Occupational Exposure/analysis , Chromium/analysis , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Industry
4.
Environ Res ; 212(Pt D): 113597, 2022 09.
Article in English | MEDLINE | ID: mdl-35660405

ABSTRACT

Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Microbiology , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Bacteria , Endotoxins/analysis , Endotoxins/toxicity , Fungi , Humans , Motor Vehicles , Occupational Exposure/analysis
5.
Environ Res ; 214(Pt 1): 113758, 2022 11.
Article in English | MEDLINE | ID: mdl-35764127

ABSTRACT

Occupational exposures to hexavalent Chromium (Cr(VI)) can occur in welding, hot working stainless steel processing, chrome plating, spray painting and coating activities. Recently, within the human biomonitoring for Europe initiative (HBM4EU), a study was performed to assess the suitability of different biomarkers to assess the exposure to Cr(VI) in various job tasks. Blood-based biomarkers may prove useful when more specific information on systemic and intracellular bioavailability is necessary. To this aim, concentrations of Cr in red blood cells (RBC-Cr) and in plasma (P-Cr) were analyzed in 345 Cr(VI) exposed workers and 175 controls to understand how these biomarkers may be affected by variable levels of exposure and job procedures. Compared to controls, significantly higher RBC-Cr levels were observed in bath plating and paint application workers, but not in welders, while all the 3 groups had significantly greater P-Cr concentrations. RBC-Cr and P-Cr in chrome platers showed a high correlation with Cr(VI) in inhalable dust, outside respiratory protective equipment (RPE), while such correlation could not be determined in welders. In platers, the use of RPE had a significant impact on the relationship between blood biomarkers and Cr(VI) in inhalable and respirable dust. Low correlations between P-Cr and RBC-Cr may reflect a difference in kinetics. This study showed that Cr-blood-based biomarkers can provide information on how workplace exposure translates into systemic availability of Cr(III) (extracellular, P-Cr) and Cr(VI) (intracellular, RBC-Cr). Further studies are needed to fully appreciate their use in an occupational health and safety context.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Biomarkers , Chromates , Chromium , Dust , Environmental Monitoring , Humans
6.
Environ Res ; 204(Pt A): 111984, 2022 03.
Article in English | MEDLINE | ID: mdl-34492275

ABSTRACT

Exposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Pollutants, Occupational/analysis , Biological Monitoring , Chromates , Chromium/analysis , Cross-Sectional Studies , Environmental Monitoring , Humans , Occupational Exposure/analysis
7.
Regul Toxicol Pharmacol ; 136: 105276, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36240957

ABSTRACT

Occupational exposure to hexavalent chromium [Cr(VI)], a known lung carcinogen, remains a relevant concern. When performing exposure assessment for risk assessment, biomonitoring is an important tool, reflecting actual internal exposure of workers. Here, we present total urinary chromium (U-Cr) biomonitoring data from several occupational sectors, spanning 1980-2016 (n > 42,000). Based on these data, we estimated lifelong (40-year) occupational lung cancer risks in the Cr-plating and welding sectors. We used published regression formulas to relate internal (U-Cr) and external Cr(VI) inhalation exposures, allowing risk assessment based on a published lung cancer dose-response. Generally, measured U-Cr levels decreased considerably over the study period. The overall highest U-Cr P95 levels (representing realistic worst-case) were measured in the interval 1980-1989 in casters, maintenance workers and welders (40-45 µg/L). By the interval 2010-2016, the U-Cr P95 had decreased to ≤9.5 µg/L in all studied sectors. Lifelong external Cr(VI) exposure estimation for 1980-2019 was 0.16-0.32 mg/m3 x year for platers and 1.03 mg/m3 x year for welders. Worst-case lifelong lung cancer relative risk (RR) estimates were 1.28-1.56 for platers and 2.80 for welders; attributable risks (AR) were 22-36% for platers and 64% for welders. Uncertainties that may have impacted the risk assessment are discussed.


Subject(s)
Lung Neoplasms , Occupational Exposure , Humans , Finland/epidemiology , Environmental Monitoring , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Chromium/toxicity , Lung , Risk Assessment , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology
8.
J Environ Manage ; 314: 115086, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35483278

ABSTRACT

Previous studies anticipated that microorganisms and their metabolites in waste will increase as a consequence of a decreased collection frequency and due to differences in what kind of waste is bagged before collection leading to an increased exposure of workers handling the waste. This study aim was to investigate the microbial contamination present in the waste collection trucks (WCT) and in the support facilities (waste collection station - WCS). It was applied a multi-approach protocol using active (air sampling by impingement and impaction) and passive (surface swabs, electrostatic dust cloths and settled dust) sampling methods. The screening of azole-resistance, the investigation of mycotoxins and the assessment of the elicited biological responses in vitro were also carried out aiming recognizing the possible health effects of waste collection drivers. SARS-CoV-2 detection was also performed. In WCS only air samples had contamination in all the four sampling sites (canteen, operational removal core, operational removal center, and administrative service). Among all the analyzed matrices from the WCT a higher percentage of total bacterial counts and Gram-was detected in swabs (66.93%; 99.36%). In WCS the most common species were Penicillium sp. (43.98%) and Cladosporium sp. (24.68%), while on WCT Aspergillus sp. (4.18%) was also one of the most found. In the azole resistance screening Aspergillus genera was not observed in the azole-supplemented media. SARS-CoV-2 was not detected in any of the environmental samples collected, but Aspergillus section Fumigati was detected in 5 samples. Mycotoxins were not detected in EDC from WCS, while in WCT they were detected in filters (N = 1) and in settled dust samples (N = 16). In conclusion, our study reveals that a comprehensive sampling approach using active and passive sampling (e.g. settled dust sampling for a representative mycotoxin evaluation) and combined analytic methods (i.e., culture-based and molecular) is an important asset in microbial exposure assessments. Concerning the waste collection exposure scenario, the results of this study unveiled a complex exposure, particularly to fungi and their metabolites. Aspergillus section Fumigati highlight the significance of targeting this section in the waste management industry as an indicator of occupational health risk.


Subject(s)
COVID-19 , Mycotoxins , Occupational Exposure , Aspergillus , Azoles , Dust/analysis , Environmental Monitoring/methods , Fungi , Humans , Mycotoxins/analysis , Portugal , SARS-CoV-2
9.
Environ Res ; 194: 110674, 2021 03.
Article in English | MEDLINE | ID: mdl-33440201

ABSTRACT

Aspergillus section Fumigati is one of the sections of the Aspergillus genus most often associated with respiratory symptoms. The azole-resistant clinical isolates in this section have been widely described worldwide. More recently, the environmental origin of azole resistance has been correlated with the development of fungal diseases and therapeutic failure. This paper presents a review of several studies performed in Portuguese occupational environments focusing on occupational exposure to this section and give guidance to exposure assessors and industrial hygienists to ensure an accurate exposure assessment. Future studies should tackle the limitations concerning the assessment of occupational exposure to the Fumigati section, in order to allow the implementation of adequate risk management measures. In the light of the results of previous studies, the following approach is proposed to ensure an accurate exposure assessment: a) a combination of active and passive sampling methods appropriate to each occupational environment; b) the use, in parallel, of culture-based methods and molecular tools to overcome the limitations of each method; c) evaluation of the mycobiota azole resistance profile; and d) consider the possible simultaneous presence of mycotoxins produced by this section when assessing workers occupational exposure. In sum, preventing the development of fungal strains resistant to azoles will only be achieved with a holistic approach. An adequate "One Health approach" can contribute positively to concerted actions in different sectors, by reducing the use of fungicides through the introduction of crops and agricultural practices that prevent fungal colonization, and by promoting the rational use of antifungal drugs in human and animal health.


Subject(s)
Aspergillus , Occupational Exposure , Antifungal Agents , Aspergillus fumigatus , Azoles , Fungal Proteins , Humans , Microbial Sensitivity Tests , Portugal
10.
Environ Res ; 197: 111125, 2021 06.
Article in English | MEDLINE | ID: mdl-33895113

ABSTRACT

Ambulance vehicles are an essential part of emergency clinical services. Bioburden control in ambulances, through cleaning and disinfection, is crucial to minimize hospital-acquired infections, cross contamination and exposure of patients and ambulances' crew. In Portugal, firefighter crews are responsible, besides fire extinction, for first aid and urgent pre-hospital treatment. This study assessed the bioburden in Portuguese firefighters' ambulances with a multi-approach protocol using active and passive sampling methods. Fungal resistance profile and mycotoxins detection in ambulances' ambient, and S. aureus (SA) prevalence and resistance profile in ambulances' ambient and colonization in workers were also investigated. Toxigenic fungi with clinical relevance, namely Aspergillus section Fumigati, were found on ambulance's air in the hazardous dimension range. Interestingly, surface contamination was higher after cleaning in several sampling sites. Prevalence of S. aureus was 3% in environmental samples, of which 2% were methicillin-sensitive (MSSA) and 1% methicillin-resistant (MRSA). About 2.07 fungal species were able to grow in at least one azole, ranging from one (44% samples) to five (6% samples) species in each azole. Mycotoxins were detected in mops and electrostatic dust cloths. Colonization by S. aureus in the firefighter crew was observed with a high associated prevalence, namely 48%, with a 24% prevalence of MSSA (8/33) and 21% of MRSA (7/33). Additional studies are needed to determine the potential risk of infection transmission between different vehicle fleets and under varying conditions of use. This will strengthen the paramedic sector's mission to save lives without putting their own health and safety at risk.


Subject(s)
Firefighters , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Ambulances , Humans , Portugal/epidemiology , Staphylococcus aureus
11.
Int J Environ Health Res ; 31(2): 160-178, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31240954

ABSTRACT

The collection and analysis of settled dust samples from indoor environments has become one of several environmental sampling methods used to assess bioburden indoors. The aim of the study was to characterize the bioburden in vacuumed settled dust from 10 Primary Health Care Centers by culture based and molecular methods. Results for bacterial load ranged from 1 to 12 CFU.g-1 of dust and Gram-negative bacteria ranged between 1 to 344 CFU.g-1 of dust. Fungal load ranged from 0 CFU.g-1 of dust to uncountable. Aspergillus section Fumigati was detected in 4 sampling sites where culture base-methods could not identify this section. Mucorales (Rhizopus sp.) was observed on 1 mg/L voriconazole. Three out of 10 settled dust samples were contaminated by mycotoxins. Settled dust sampling coupled with air sampling in a routine way might provide useful information about bioburden exposure.


Subject(s)
Air Microbiology/standards , Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring/methods , Hospitals/standards , Aspergillus fumigatus/isolation & purification , Gram-Negative Bacteria/isolation & purification , Portugal
12.
Environ Res ; 189: 109881, 2020 10.
Article in English | MEDLINE | ID: mdl-32979993

ABSTRACT

In Portugal, mechanical protection gloves (MPG) are of mandatory use and during their use sweat is released and, consequently, the humidity of the material increases leading to conditions favorable to the growth of microorganisms. However, no studies have been conducted in MPG to assess the bioburden. This study intended to determine the bioburden present in MPG and their biological effects, and to discuss the possibility to use MPG as a passive method to assess occupational exposure to microbial contamination. Fungal burden was characterized through molecular tools for fungal toxigenic species, and antifungal resistance and mycotoxins profiles were determined. Cell viability was determined in swine kidney (SK) monolayer and hepatocellular carcinoma (Hep G2) cell lines. All MPG samples presented Gram-negative bacteria. The fungal contamination ranged from 0 CFU.m-2 in both MEA and DG18, to 5.09 × 106 and 2.75 × 106 and the most commonly fungi found was Aspergillus spp. (50.46%). Azole resistant Aspergillus sections were found in azole supplemented media. Aspergillus sections (Circumdati, Flavi, Fumigati and Versicolores) were detected by molecular tools in 66 out of 67 samples. The most reported mycotoxin was mycophenolic acid (89.6%). HepG2 cells appear to be more sensitive to MPG contamination, with high cytotoxicity (IC50 < 0.05 mm2/ml) observed for 18 out of 57 gloves. MPG can be used in passive sampling to assess occupational exposure to bioburden in waste sorting industries and contribute for risk characterization. Some contaminants of MPG had cytotoxic potential and affected the biology of hepatic cells more than renal cells.


Subject(s)
Mycotoxins , Occupational Exposure , Animals , Aspergillus , Food Contamination , Fungi , Mycotoxins/analysis , Portugal , Swine
13.
Environ Res ; 191: 110134, 2020 12.
Article in English | MEDLINE | ID: mdl-32860779

ABSTRACT

The use of Filtering Respiratory Protective Devices (FRPD) is mandatory in Portugal to protect workers from the waste industry of harmful exposures. Deleterious health effects of exposure to bioburden via inhalation and/or ingestion include respiratory symptoms and nephrotoxicity. Between January and February 2019, 118 FRPD samples were collected in one waste sorting industry and characterized regarding microbial contamination and cytotoxicity, defined as cell metabolic activity, through the MTT colorimetric assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide). Cytotoxic effect was classified according to percentage of extinction values with respect to the control group, as follows: absent (≥90); low (80%-90%, +); medium (60%-79%, ++); and high (below 60%, +++). For 113 samples the MTT assay revealed a cytotoxic effect in A549 cells, of which 81 presented high cytotoxicity. In SK cells, a cytotoxic effect was observed in 56 samples, of which five displayed a high cytotoxic effect. Several moderate (p < 0.05) to strong (p < 0.01) correlations were found between higher bacterial and fungal counts both in interior layers (fungi and bacteria) and in exhalation valves (fungi) of FRPD samples and reduced cell metabolic activity of SK cells. On the basis of the obtained results for the cytotoxic effect of FRPD samples on two different cells lines, it was determined that A549 cells exhibited a cytotoxic effect for a higher number of FRPD, whereas the SK cells model correlated better with the other assessed parameters, namely, bacterial and fungal counts and conditions of FRPD use. Although the results are not conclusive on the most appropriate cell line to assess FRPD cytotoxicity, they reinforce the importance of in vitro toxicology in exposure assessments to determine the cytotoxicity of mixtures of contaminants, for better risk characterization and selection of appropriate risk management measures.


Subject(s)
Respiratory Protective Devices , Bacteria , Fungi , Humans , Industry , Portugal
14.
Environ Res ; 181: 108947, 2020 02.
Article in English | MEDLINE | ID: mdl-31767353

ABSTRACT

The bioburden in a Hospital building originates not only from patients, visitors and staff, but is also disseminated by several indoor hospital characteristics and outdoor environmental sources. This study intends to assess the exposure to bioburden in one central Hospital with a multi-approach protocol using active and passive sampling methods. The microbial contamination was also characterized through molecular tools for toxigenic species, antifungal resistance and mycotoxins and endotoxins profile. Two cytotoxicity assays (MTT and resazurin) were conducted with two cell lines (Calu-3 and THP-1), and in vitro pro-inflammatory potential was assessed in THP-1 cell line. Out of the 15 sampling locations 33.3% did not comply with Portuguese legislation regarding bacterial contamination, whereas concerning fungal contamination 60% presented I/O > 1. Toxigenic fungal species were observed in 27% of the sampled rooms (4 out of 15) and qPCR analysis successfully amplified DNA from the Aspergillus sections Flavi and Fumigati, although mycotoxins were not detected. Growth of distinct fungal species was observed on Sabouraud dextrose agar with triazole drugs, such as Aspergillus section Versicolores on 1 mg/L VORI. The highest concentrations of endotoxins were found in settled dust samples and ranged from 5.72 to 23.0 EU.mg-1. While a considerable cytotoxic effect (cell viability < 30%) was observed in one HVAC filter sample with Calu-3 cell line, it was not observed with THP-1 cell line. In air samples a medium cytotoxic effect (61-68% cell viability) was observed in 3 out of 15 samples. The cytokine responses produced a more potent average cell response (46.8 ± 12.3 ρg/mL IL-1ß; 90.8 ± 58.5 ρg/mL TNF-α) on passive samples than air samples (25.5 ± 5.2 ρg/mL IL-1ß and of 19.4 ± 5.2 ρg/mL TNF-α). A multi-approach regarding parameters to assess, sampling and analysis methods should be followed to characterize the biorburden in the Hospital indoor environment. This study supports the importance of considering exposure to complex mixtures in indoor environments.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Environmental Exposure/statistics & numerical data , Mycotoxins , Dust , Environmental Monitoring , Fungi , Humans
15.
Regul Toxicol Pharmacol ; 116: 104726, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32659246

ABSTRACT

This study aimed to evaluate occupational exposure to a styrene and xylene mixture through environmental exposure assessment and identify the potential genotoxic effects through biological monitoring. Secondly, we also exposed human peripheral blood cells in vitro to both xylene and styrene either alone or in mixture at concentrations found in occupational settings in order to understand their mechanism of action. The results obtained by air monitoring were below the occupational exposure limits for both substances. All biomarkers of effect, except for nucleoplasmic bridges, had higher mean values in workers (N = 17) compared to the corresponding controls (N = 17). There were statistically significant associations between exposed individuals and the presence of nuclear buds and oxidative damage. As for in vitro results, there was no significant influence on primary DNA damage in blood cells as evaluated by the comet assay. On the contrary, we did observe a significant increase of micronuclei and nuclear buds, but not nucleoplasmic bridges upon in vitro exposure. Taken together, both styrene and xylene have the potential to induce genomic instability either alone or in combination, showing higher effects when combined. The obtained data suggested that thresholds for individual chemicals might be insufficient for ensuring the protection of human health.


Subject(s)
Air Pollutants, Occupational/toxicity , Mutagens/toxicity , Solvents/toxicity , Styrene/toxicity , Xylenes/toxicity , Adult , Air Pollutants, Occupational/analysis , Biomarkers , Blood Cells/drug effects , Comet Assay , Environmental Monitoring , Genomic Instability , Humans , Male , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Middle Aged , Mutagens/analysis , Occupational Exposure/analysis , Oxidative Stress/drug effects , Solvents/analysis , Styrene/analysis , Xylenes/analysis , Young Adult
16.
J Sci Food Agric ; 100(3): 1118-1123, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31667844

ABSTRACT

BACKGROUND: Dairy farming feed can be contaminated with mycotoxins, affecting animals' health and milk quality. Dairy farming is also prone to occupational exposure to mycotoxins, and feed is recognized as a source of contamination in the workplace. An exploratory study was developed in a dairy farm located in Portugal intending to assess the mycotoxins present in the feed. RESULTS: All the samples analyzed presented contamination by at least two mycotoxins and up to a maximum of 13 mycotoxins in the same sample. Zearalenone (ZEA) was detected in all the samples (n = 10) followed by deoxynivalenol (DON), which was reported in eight samples, and ochratoxin A (OTA), reported in five samples. CONCLUSION: The results point to the possible contamination of milk by several mycotoxins and raise the possibility of occupational exposure to mycotoxins due to feed contamination. An adequate One Health approach for dairy production should address these issues through effective preventive actions such as avoiding the use of feed contaminated with mycotoxins. This represents an important challenge due to climate change. It requires proper attention and accurate management measures. © 2019 Society of Chemical Industry.


Subject(s)
Agricultural Workers' Diseases/etiology , Animal Feed/analysis , Milk/chemistry , Mycotoxins/analysis , Occupational Exposure/adverse effects , Agricultural Workers' Diseases/prevention & control , Animals , Cattle , Farmers/statistics & numerical data , Farms , Food Contamination/analysis , Humans , Mycotoxins/toxicity , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Ochratoxins/analysis , Ochratoxins/toxicity , Portugal , Zearalenone/analysis , Zearalenone/toxicity
17.
J Occup Environ Hyg ; 17(11-12): 523-530, 2020.
Article in English | MEDLINE | ID: mdl-33206026

ABSTRACT

The organic material present on waste sorting units serve as a substrate for different microorganisms, increasing workers' exposure to Aspergillus spp. This study intends to assess the Aspergillus spp. contamination on Mechanical Protection Gloves (MPG) from different workstations and understand the role of MPG in workers' exposure to these genera. Sixty-seven used MPG were collected from different workstations and extracts were seeded on malt extract agar (MEA) supplemented with chloramphenicol (0.05%) and dichloran glycerol (DG18). The same extracts were used for the molecular detection of fungal species/strains, with reported toxigenic potential, namely Aspergillus sections (Circumdati, Flavi, Fumigati, and Nidulantes). Among Aspergillus spp., the sections with the highest prevalence on MEA were Nigri (88.29%) and Fumigati (8.63%), whereas on DG18 were Nigri (31.79%) and Circumdati (30.77%). Aspergillus section Circumdati was detected in 22 MPG samples by RT-PCR (32.84%), Fumigati in 59 samples (88.06%), Nidulantes in 61 samples (91.05%), and Flavi in 6 samples (8.96%). It was showed that, even with daily replacement, MPG presented Aspergillus spp. contamination. Thus, a more regular replacement of MPG and the adoption of complementary hygienic procedures by workers are critical to guarantee workers' protection in this occupational environment.


Subject(s)
Aspergillus/isolation & purification , Gloves, Protective/microbiology , Waste Disposal Facilities , Aspergillus/classification , Humans , Occupational Exposure/statistics & numerical data , Portugal
19.
Med Mycol ; 57(Supplement_2): S196-S205, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30816970

ABSTRACT

Aspergillus spp. have a high nutritional versatility and good growth on a large variety of construction materials. They also colonize soil or food, but decaying vegetation is their primary ecological niche. Therefore, exposure to fungi may occur at home, during hospitalization, during specific leisure activities, or at the workplace. The development of Aspergillus infections depends on the interplay between host susceptibility and the organism. Environments with high counts of fungal elements (conidia, hyphal fragments and others), high levels of bioarerosols, and elevated concentrations of mycotoxins or other volatile organic compounds should be considered as potential hazards, since they may present a risk to the exposed person. Rural tasks as well as work related to wood and food industries, poultries, swineries, waste handling plants, and other occupational environments involving contaminated organic material are among the ones posing higher respiratory risks to the workers. This paper presents a review of several studies related to occupational and indoor exposure to Aspergillus, potential health effects related to that exposure, and associated exposure assessment procedures.


Subject(s)
Aspergillosis/epidemiology , Environmental Exposure , Occupational Exposure , Humans
20.
Environ Res ; 177: 108583, 2019 10.
Article in English | MEDLINE | ID: mdl-31330491

ABSTRACT

The EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. Within its remit, the project is gathering new, policy relevant, EU-wide data on occupational exposure to relevant priority chemicals and developing new approaches for occupational biomonitoring. In this manuscript, the hexavalent chromium [Cr(VI)] study design is presented as the first example of this HBM4EU approach. This study involves eight European countries and plans to recruit 400 workers performing Cr(VI) surface treatment e.g. electroplating or stainless steel welding activities. The aim is to collect new data on current occupational exposure to Cr(VI) in Europe and to test new methods for Cr biomonitoring, specifically the analysis of Cr(VI) in exhaled breath condensate (EBC) and Cr in red blood cells (RBC) in addition to traditional urinary total Cr analyses. Furthermore, exposure data will be complemented with early biological effects data, including genetic and epigenetic effects. Personal air samples and wipe samples are collected in parallel to help informing the biomonitoring results. We present standard operational procedures (SOPs) to support the harmonized methodologies for the collection of occupational hygiene and HBM samples in different countries.


Subject(s)
Air Pollutants, Occupational , Chromium , Occupational Exposure , Biological Monitoring , Environmental Monitoring , Europe , Humans
SELECTION OF CITATIONS
SEARCH DETAIL