Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Nature ; 555(7696): 342-345, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29334685

ABSTRACT

The modern theory of charge polarization in solids is based on a generalization of Berry's phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

2.
J Neurosci ; 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35817577

ABSTRACT

Spreading depolarization (SD), usually termed cortical spreading depression has been proposed as the pathophysiological substrate of migraine aura and as an endogenous trigger of headache pain. The links between neurovascular coupling and cortical craniofacial nociceptive activities modulated by SD were assessed by combining in vivo local field potential (LFPs) recordings in the primary somatosensory cortex (S1) with functional ultrasound (fUS) imaging of S1 and caudal insular (INS) cortices of anesthetized male rats. A single SD wave triggered in the primary visual cortex elicited an ipsilateral, quadriphasic hemodynamic and electrophysiological response in S1 with an early phase consisting of concomitant increases of relative cerebral blood volume (rCBV) and LFPs. A transient hypoperfusion was then correlated with the beginning of the neuronal silence, followed by a strong increase of rCBV while synaptic activities remained inhibited.LFPs and rCBV recovery period was followed by a progressive increase in S1 and INS baseline activities and facilitation of cortical responses evoked by periorbital cutaneous receptive fields stimulation. Sensitization of cortical ophthalmic fields by SD was bilateral, occurred with precise spatiotemporal profiles and was significantly reduced by pre-treatment with a NMDA antagonist. Combined high-resolution assessing of neurovascular coupling and electrophysiological activities has revealed a useful preclinical tool for deciphering central sensitization mechanisms involved in migraine attacks.SIGNIFICANCE STATEMENTA crucial unsolved issue is whether visual aura and migraine headache are parallel or sequential processes. Here we show that a single spreading depolarization (SD) wave triggered from the primary visual cortex is powerful enough to elicit progressive, sustained increases of hemodynamic and sensory responses to percutaneous periorbital noxious stimuli recorded in S1 and Insular ophthalmic fields. Sensitization of cortical ophthalmic fields by SD was bilateral, occurred with precise spatiotemporal profiles and was significantly reduced by pre-treatment with a NMDA antagonist. Combined high-resolution assessing of neurovascular coupling and electrophysiological activities has revealed a useful preclinical tool for deciphering central sensitization mechanisms involved in migraine attacks.

3.
Medicina (Kaunas) ; 59(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37241060

ABSTRACT

Background and Objectives: Chronic Kidney Disease of uncertain or non-traditional etiology (CKDnT) is a form of chronic kidney disease of undetermined etiology (CKDu) and is not associated with traditional risk factors. The aim of this study was to investigate the association of polymorphisms rs2070744, 4b/a and rs1799983 of the NOS3 gene with CKDnT in Mexican patients. Materials and Methods: We included 105 patients with CKDnT and 90 controls. Genotyping was performed by PCR-RFLP's, genotypic and allelic frequencies were determined and compared between the two groups using χ2 analysis, and differences were expressed as odd ratios with 95% confidence intervals (CI). Values of p < 0.05 were considered statistically significant. Results: Overall, 80% of patients were male. The rs1799983 polymorphism in NOS3 was found to be associated with CKDnT in the Mexican population (p = 0.006) (OR = 0.397; 95% CI, 0.192-0.817) under a dominant model. The genotype frequency was significantly different between the CKDnT and control groups (χ2 = 8.298, p = 0.016). Conclusions: The results of this study indicate that there is an association between the rs2070744 polymorphism and CKDnT in the Mexican population. This polymorphism can play an important role in the pathophysiology of CKDnT whenever there is previous endothelial dysfunction.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Humans , Male , Female , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Nitric Oxide Synthase Type III/genetics , Case-Control Studies , Genotype
4.
Small ; 18(28): e2201816, 2022 07.
Article in English | MEDLINE | ID: mdl-35638191

ABSTRACT

Measuring vibrations is essential to ensuring building structural safety and machine stability. Predictive maintenance is a central internet of things (IoT) application within the new industrial revolution, where sustainability and performance increase over time are going to be paramount. To reduce the footprint and cost of vibration sensors while improving their performance, new sensor concepts are needed. Here, double-layer graphene membranes are utilized with a suspended silicon proof demonstrating their operation as resonant vibration sensors that show outstanding performance for a given footprint and proof mass. The unveiled sensing effect is based on resonant transduction and has important implications for experimental studies involving thin nano and micro mechanical resonators that are excited by an external shaker.


Subject(s)
Graphite , Micro-Electrical-Mechanical Systems , Equipment Design , Graphite/chemistry , Silicon , Vibration
5.
Parasitol Res ; 120(11): 3783-3794, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34549347

ABSTRACT

Cysticercosis is a disease caused by the metacestode of the parasite Taenia solium (T. solium). In humans, the most severe complication of the disease is neurocysticercosis. The drug of choice to treat this disease is albendazole; however, the bioavailability and efficacy of the drug are variable. Therefore, new molecules with therapeutic effects against this and other parasitic infections caused by helminths must be developed. Naphthoquinones are naphthalene-derived compounds that possess antibacterial, antifungal, antitumoral, and antiparasitic properties. The aim of this work was to evaluate the in vitro anti-helminthic effect of 2-[(3-chlorophenylamino)phenylmethyl]-3-hydroxy-1,4-naphthoquinone, isolated from a natural source and then synthesized (naphthoquinone 4a), using an experimental model of murine cysticercosis caused by Taenia crassiceps (T. crassiceps). This compound causes paralysis in the cysticerci membrane from day 3 of the in vitro treatment. Additionally, it induces changes in the shape, size, and appearance of the cysticerci and a decrease in the reproduction rate. In conclusion, naphthoquinone 4a has in vitro cysticidal activity on T. crassiceps cysticerci depending on the duration of the treatment and the concentration of the compound. Therefore, it is a promising drug candidate to be used in T. crassiceps and possibly T. solium infections.


Subject(s)
Cysticercosis , Naphthoquinones , Taenia solium , Taenia , Taeniasis , Animals , Cysticercosis/drug therapy , Cysticercosis/veterinary , Cysticercus , Humans , Mice , Mice, Inbred BALB C , Naphthoquinones/pharmacology
6.
Mol Pain ; 13: 1744806917727625, 2017.
Article in English | MEDLINE | ID: mdl-28814148

ABSTRACT

Background: Blood­nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Methods: Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/ß-catenin pathway in chronic constriction injury-mediated blood­nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. Results: IoN-CCI induced early alterations in the vascular endothelial-cadherin/ß-catenin/Frizzled-7 complex, shown to participate in local blood­nerve barrier disruption via a ß-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/ß-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood­nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood­nerve barrier disruption. Conclusion: A crosstalk between Wnt/ß-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood­nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.


Subject(s)
Blood-Nerve Barrier/metabolism , Endothelial Cells/metabolism , Wnt Signaling Pathway/physiology , Animals , Chronic Disease , Constriction, Pathologic , Hedgehog Proteins/metabolism , Male , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolism , beta Catenin/metabolism
7.
Rev Gastroenterol Peru ; 37(1): 71-76, 2017.
Article in Spanish | MEDLINE | ID: mdl-28489840

ABSTRACT

The solid pseudopapillary tumor of the pancreas (SPT) is a rare neoplasm with low malignant potential in children. We report the case of a 9 years old child with a SPT localized in the pancreatic head. She underwent a pancreaticoduodenectomy (PD) with favorable evolution. The PD in high-volume centers is safe in both adults and children.


Subject(s)
Carcinoma, Papillary/surgery , Pancreatic Neoplasms/surgery , Pancreaticoduodenectomy , Child , Female , Humans
8.
J Neurochem ; 136(1): 133-47, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26440453

ABSTRACT

After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons. Purified rat primary microglia was stimulated with JAK/STAT3 classical activator interleukin-6 in the presence or absence of a selective STAT3 inhibitor and rat primary astrocytes or spinal cord neurons were exposed to microglia conditioned media (CM). JAK/STAT3 activity-generated microglial CM modulated both astrocyte and neuron characteristics. Beyond inducing mRNA expression changes in various targets of interest in astrocytes and neurons, microglia CM activated c-Jun N-terminal kinase, STAT3 and NF-κB intracellular pathways in astrocytes and promoted their proliferation. Without modifying neuronal excitability or survival, CM affected the nerve processes morphology and distribution of the post-synaptic density protein 95, a marker of glutamatergic synaptic contacts. These findings show that JAK/STAT3 activity in microglia impacts the functional characteristics of astrocytes and neurons. This suggests its participation in spinal cord tissue plasticity and remodeling occurring after peripheral nerve injury. We show that the activity of JAK/STAT3 pathway in microglial cells confers them a specific signaling modality toward neighboring cells, promoting astrocyte proliferation and changes in neuronal morphology. These in vitro data suggest that the early JAK/STAT3 activation in spinal cord microglia, associated with peripheral nerve injury, participates in functional alteration of various cell populations and in spinal tissue remodeling.


Subject(s)
Astrocytes/metabolism , Janus Kinases/metabolism , Microglia/metabolism , Neurons/metabolism , STAT3 Transcription Factor/metabolism , Spinal Cord/metabolism , Animals , Cells, Cultured , Female , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Spinal Cord/cytology
9.
Sensors (Basel) ; 16(6)2016 05 27.
Article in English | MEDLINE | ID: mdl-27240374

ABSTRACT

The authors wish to make the following correction to this paper [1]: The article type should be changed from "Review" into "Article".[...].

10.
Sensors (Basel) ; 15(11): 28543-62, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26569256

ABSTRACT

Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke's law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale.


Subject(s)
Models, Theoretical , Nanostructures , Particle Size , Elasticity , Microtechnology , Nanotechnology , Stress, Mechanical , Surface Properties
11.
J Neurosci ; 33(20): 8827-40, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23678125

ABSTRACT

While functional imaging and deep brain stimulation studies point to a pivotal role of the hypothalamus in the pathophysiology of migraine and trigeminal autonomic cephalalgias, the circuitry and the mechanisms underlying the modulation of medullary trigeminovascular (Sp5C) neurons have not been fully identified. We investigated the existence of a direct anatomo-functional relationship between hypothalamic excitability disturbances and modifications of the activities of Sp5C neurons in the rat. Anterograde and retrograde neuronal anatomical tracing, intrahypothalamic microinjections, extracellular single-unit recordings of Sp5C neurons, and behavioral trials were used in this study. We found that neurons of the paraventricular nucleus of the hypothalamus (PVN) send descending projections to the superior salivatory nucleus, a region that gives rise to parasympathetic outflow to cephalic and ocular/nasal structures. PVN cells project also to laminae I and outer II of the Sp5C. Microinjections of the GABAA agonist muscimol into PVN inhibit both basal and meningeal-evoked activities of Sp5C neurons. Such inhibitions were reduced in acutely restrained stressed rats. GABAA antagonist gabazine infusions into the PVN facilitate meningeal-evoked responses of Sp5C neurons. PVN injections of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP38) enhance Sp5C basal activities, whereas the antagonist PACAP6-38 depresses all types of Sp5C activities. 5-HT1B/D receptor agonist naratriptan infusion confined to the PVN depresses both basal and meningeal-evoked Sp5C activities. Our findings suggest that paraventricular hypothalamic neurons directly control both spontaneous and evoked activities of Sp5C neurons and could act either as modulators or triggers of migraine and/or trigeminal autonomic cephalalgias by integrating nociceptive, autonomic, and stress processing mechanisms.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Paraventricular Hypothalamic Nucleus/physiology , Trigeminal Nuclei/cytology , Trigeminal Nuclei/physiology , Animals , Biotin/analogs & derivatives , Corticosterone/metabolism , Dextrans , Disease Models, Animal , GABA Antagonists , GABA-A Receptor Agonists/pharmacology , Male , Muscimol/pharmacology , Neural Pathways/drug effects , Neural Pathways/physiology , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/drug effects , Physical Stimulation/adverse effects , Piperidines/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pyridazines/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin Receptor Agonists/pharmacology , Stilbamidines , Stress, Psychological/metabolism , Tryptamines/pharmacology
12.
Opt Express ; 22(6): 6810-21, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24664029

ABSTRACT

Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

13.
Phys Rev Lett ; 112(1): 014101, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24483899

ABSTRACT

We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.


Subject(s)
Micro-Electrical-Mechanical Systems/methods , Models, Theoretical , Nanotechnology/methods , Micro-Electrical-Mechanical Systems/instrumentation , Nanotechnology/instrumentation
14.
ACS Appl Nano Mater ; 7(1): 102-109, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38229663

ABSTRACT

The unique mechanical and electrical properties of graphene make it an exciting material for nanoelectromechanical systems (NEMS). NEMS resonators with graphene springs facilitate studies of graphene's fundamental material characteristics and thus enable innovative device concepts for applications such as sensors. Here, we demonstrate resonant transducers with ribbon-springs made of double-layer graphene and proof masses made of silicon and study their nonlinear mechanics at resonance both in air and in vacuum by laser Doppler vibrometry. Surprisingly, we observe spring-stiffening and spring-softening at resonance, depending on the graphene spring designs. The measured quality factors of the resonators in a vacuum are between 150 and 350. These results pave the way for a class of ultraminiaturized nanomechanical sensors such as accelerometers by contributing to the understanding of the dynamics of transducers based on graphene ribbons with an attached proof mass.

15.
Adv Mater ; 36(27): e2310198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38546029

ABSTRACT

Complex oxides offer a wide range of functional properties, and recent advances in the fabrication of freestanding membranes of these oxides are adding new mechanical degrees of freedom to this already rich functional ecosystem. Here, photoactuation is demonstrated in freestanding thin film resonators of ferroelectric Barium Titanate (BaTiO3) and paraelectric Strontium Titanate (SrTiO3). The free-standing films, transferred onto perforated supports, act as nano-drums, oscillating at their natural resonance frequency when illuminated by a frequency-modulated laser. The light-induced deflections in the ferroelectric BaTiO3 membranes are two orders of magnitude larger than in the paraelectric SrTiO3 ones. Time-resolved X-ray micro-diffraction under illumination and temperature-dependent holographic interferometry provide combined evidence for the photostrictive strain in BaTiO3 originating from a partial screening of ferroelectric polarization by photo-excited carriers, which decreases the tetragonality of the unit cell. These findings showcase the potential of photostrictive freestanding ferroelectric films as wireless actuators operated by light.

16.
SA J Radiol ; 28(1): 2874, 2024.
Article in English | MEDLINE | ID: mdl-38840829

ABSTRACT

This report describes a rare case in which double calcifications of the acetabular labrum and rectus femoris occurred concomitantly in a middle-aged female patient who was treated successfully with surgical intervention via hip arthroscopy. Contribution: This case highlights the existence of various types of calcifications around the acetabulum, with a proposed new classification system for acetabular and periacetabular rim ossifications.

17.
Eur J Pain ; 27(9): 1126-1138, 2023 10.
Article in English | MEDLINE | ID: mdl-37421221

ABSTRACT

BACKGROUND AND OBJECTIVE: Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS: We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION: It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE: This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.


Subject(s)
Migraine Disorders , Trigeminal Autonomic Cephalalgias , Animals , Humans , Headache , Migraine Disorders/therapy , Pain , Brain , Trigeminal Autonomic Cephalalgias/therapy
18.
ACS Photonics ; 10(6): 1882-1889, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37363628

ABSTRACT

Reflectivity modulation is a critical feature for applications in telecommunications, 3D imaging and printing, advanced laser machining, or portable displays. Tunable metasurfaces have recently emerged as a promising implementation for miniaturized and high-performance tunable optical components. Commonly, metasurface response tuning is achieved by electro-optical effects. In this work, we demonstrate reflectivity modulation based on a nanostructured, mechanically tunable, metasurface, consisting of an amorphous silicon nanopillar array and a suspended amorphous silicon membrane with integrated electrostatic actuators. With a membrane displacement of only 150 nm, we demonstrate reflectivity modulation by Mie resonance enhanced absorption in the pillar array, leading to a reflectivity contrast ratio of 1:3 over the spectral range from 400-530 nm. With fast, low-power electrostatic actuation and a broadband response in the visible spectrum, this mechanically tunable metasurface reflectivity modulator could enable high frame rate dynamic reflective displays.

19.
J Breast Cancer ; 26(4): 378-390, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37565930

ABSTRACT

PURPOSE: Association between variants rs1047972 and rs8173 of the AURKA gene in healthy women and breast cancer (BC) in a Mexican population. METHODS: Genomic DNA samples from 409 healthy women and 572 patients with BC were analyzed for variants rs1047972 and rs8173 of the AURKA gene by polymerase chain reaction-restriction fragment length polymorphism. RESULTS: TT genotype (odds ratio [OR], 2.5; 95% confidence interval [CI], 1.22-5.11; p = 0.0015) and the T allele (OR, 1.16; 95% CI, 1.23-2.12; p = 0.0007) of the rs1047972 variant were associated as risk susceptibility for BC relative to the control group. Contrarily, the GG genotype (OR, 0.64; 95% CI, 0.43-0.94; p = 0.029) was associated as a protective factor of susceptibility of BC of the variant rs8173 of the AURKA gene. Differences were observed in the patients with BC who were carriers of the CT genotype of the rs1047972 variant with overweight, obesity, estrogen receptor-positive plus obesity, Ki-67 (≥ 20%) plus history familial positive of cancer; and for variant rs8173 the BC patients who were CG carriers and presented chemotherapy gastric toxicity, hormonal receptor positive plus chemotherapy gastric toxicity, and menopause status plus chemotherapy gastric toxicity (p < 0.05). Two common haplotypes were identified in the study groups: CG and TC genotypes, were associated as a protective and risk factor, respectively (p < 0.05). CONCLUSION: Variants rs1047972 and rs8173 of the AURKA gene and the TC haplotype were associated as risk susceptibility factors for BC in this population.

20.
Microsyst Nanoeng ; 8: 105, 2022.
Article in English | MEDLINE | ID: mdl-36133693

ABSTRACT

Microelectromechanical system (MEMS) devices, such as accelerometers, are widely used across industries, including the automotive, consumer electronics, and medical industries. MEMS are efficiently produced at very high volumes using large-scale semiconductor manufacturing techniques. However, these techniques are not viable for the cost-efficient manufacturing of specialized MEMS devices at low- and medium-scale volumes. Thus, applications that require custom-designed MEMS devices for markets with low- and medium-scale volumes of below 5000-10,000 components per year are extremely difficult to address efficiently. The 3D printing of MEMS devices could enable the efficient realization and production of MEMS devices at these low- and medium-scale volumes. However, current micro-3D printing technologies have limited capabilities for printing functional MEMS. Herein, we demonstrate a functional 3D-printed MEMS accelerometer using 3D printing by two-photon polymerization in combination with the deposition of a strain gauge transducer by metal evaporation. We characterized the responsivity, resonance frequency, and stability over time of the MEMS accelerometer. Our results demonstrate that the 3D printing of functional MEMS is a viable approach that could enable the efficient realization of a variety of custom-designed MEMS devices, addressing new application areas that are difficult or impossible to address using conventional MEMS manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL