Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Annu Rev Biochem ; 90: 681-707, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33441034

ABSTRACT

Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.


Subject(s)
Host-Pathogen Interactions/physiology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Virus Replication/physiology , Animals , Cell Membrane/metabolism , Humans , Micelles , Phosphatidylinositol 4,5-Diphosphate/chemistry , Viral Proteins/metabolism
2.
Nature ; 563(7731): E22, 2018 11.
Article in English | MEDLINE | ID: mdl-30158708

ABSTRACT

In this Letter, the Protein Data Bank (PDB) accessions were incorrectly listed as '6BH5, 6BHT and 6BHS' instead of '6BHR, 6BHT and 6BHS'; this has been corrected online.

3.
Nature ; 560(7719): 509-512, 2018 08.
Article in English | MEDLINE | ID: mdl-30069050

ABSTRACT

A short, 14-amino-acid segment called SP1, located in the Gag structural protein1, has a critical role during the formation of the HIV-1 virus particle. During virus assembly, the SP1 peptide and seven preceding residues fold into a six-helix bundle, which holds together the Gag hexamer and facilitates the formation of a curved immature hexagonal lattice underneath the viral membrane2,3. Upon completion of assembly and budding, proteolytic cleavage of Gag leads to virus maturation, in which the immature lattice is broken down; the liberated CA domain of Gag then re-assembles into the mature conical capsid that encloses the viral genome and associated enzymes. Folding and proteolysis of the six-helix bundle are crucial rate-limiting steps of both Gag assembly and disassembly, and the six-helix bundle is an established target of HIV-1 inhibitors4,5. Here, using a combination of structural and functional analyses, we show that inositol hexakisphosphate (InsP6, also known as IP6) facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1.


Subject(s)
HIV-1/metabolism , Inositol Phosphates/metabolism , Virion/metabolism , Virus Assembly , Arginine/metabolism , Capsid/chemistry , Capsid/metabolism , Crystallography, X-Ray , HIV-1/chemistry , HIV-1/genetics , In Vitro Techniques , Lysine/metabolism , Models, Molecular , Molecular Dynamics Simulation , Virion/chemistry , Virion/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism
4.
PLoS Pathog ; 16(1): e1008277, 2020 01.
Article in English | MEDLINE | ID: mdl-31986188

ABSTRACT

Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.


Subject(s)
Equine Infectious Anemia/metabolism , Gene Products, gag/chemistry , Gene Products, gag/metabolism , Infectious Anemia Virus, Equine/physiology , Phytic Acid/metabolism , Virion/physiology , Amino Acid Sequence , Animals , Electron Microscope Tomography , Equine Infectious Anemia/virology , Gene Products, gag/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , HIV-1/ultrastructure , Horses , Host-Pathogen Interactions , Infectious Anemia Virus, Equine/chemistry , Infectious Anemia Virus, Equine/genetics , Infectious Anemia Virus, Equine/ultrastructure , Sequence Alignment , Virion/genetics , Virion/ultrastructure , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
5.
Biophys J ; 114(11): 2630-2639, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874613

ABSTRACT

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca2+, Mg2+, Zn2+, or trivalent ions Fe3+ and Al3+. Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events.


Subject(s)
Phosphatidylinositol 4,5-Diphosphate/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Fluorescence Resonance Energy Transfer , Phosphatidylinositol 4,5-Diphosphate/metabolism
6.
Biophys J ; 113(9): 2004-2015, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29117524

ABSTRACT

Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/metabolism , Retroviridae Proteins/chemistry , Retroviridae Proteins/metabolism , Solvents/chemistry , Static Electricity , Animals , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Phosphatidylcholines/metabolism , Phosphatidylserines/metabolism , Protein Binding , Protein Conformation , Protein Domains , Rous sarcoma virus
7.
J Virol ; 90(20): 9518-32, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27512076

ABSTRACT

UNLABELLED: The retroviral structural protein Gag binds to the inner leaflet of the plasma membrane (PM), and many cellular proteins do so as well. We used Rous sarcoma virus (RSV) Gag together with membrane sensors to study the principles governing peripheral protein membrane binding, including electrostatics, specific recognition of phospholipid headgroups, sensitivity to phospholipid acyl chain compositions, preference for membrane order, and protein multimerization. We used an in vitro liposome-pelleting assay to test protein membrane binding properties of Gag, the well-characterized MARCKS peptide, a series of fluorescent electrostatic sensor proteins (mNG-KRn), and the specific phosphatidylserine (PS) binding protein Evectin2. RSV Gag and mNG-KRn bound well to membranes with saturated and unsaturated acyl chains, whereas the MARCKS peptide and Evectin2 preferentially bound to membranes with unsaturated acyl chains. To further discriminate whether the primary driving force for Gag membrane binding is electrostatic interactions or preference for membrane order, we measured protein binding to giant unilamellar vesicles (GUVs) containing the same PS concentration in both disordered (Ld) and ordered (Lo) phases. RSV Gag and mNG-KRn membrane association followed membrane charge, independent of membrane order. Consistent with pelleting data, the MARCKS peptide showed preference for the Ld domain. Surprisingly, the PS sensor Evectin2 bound to the PS-rich Ld domain with 10-fold greater affinity than to the PS-rich Lo domain. In summary, we found that RSV Gag shows no preference for membrane order, while proteins with reported membrane-penetrating domains show preference for disordered membranes. IMPORTANCE: Retroviral particles assemble on the PM and bud from infected cells. Our understanding of how Gag interacts with the PM and how different membrane properties contribute to overall Gag assembly is incomplete. This study examined how membrane charge and membrane order influence Gag membrane association. Consistent with previous work on RSV Gag, we report here that electrostatic interactions provide the primary driving force for RSV Gag membrane association. Using phase-separated GUVs with known lipid composition of the Ld and Lo phases, we demonstrate for the first time that RSV Gag is sensitive to membrane charge but not membrane order. In contrast, the cellular protein domain MARCKS and the PS sensor Evectin2 show preference for disordered membranes. We also demonstrate how to define GUV phase composition, which could serve as a tool in future studies of protein membrane interactions.


Subject(s)
Cell Membrane/metabolism , Gene Products, gag/metabolism , Animals , Birds , Cells, Cultured , Intracellular Signaling Peptides and Proteins/metabolism , Liposomes/metabolism , Membrane Proteins/metabolism , Myristoylated Alanine-Rich C Kinase Substrate , Protein Binding/physiology , Retroviridae
8.
J Virol ; 90(5): 2473-85, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26676779

ABSTRACT

UNLABELLED: The principles underlying membrane binding and assembly of retroviral Gag proteins into a lattice are understood. However, little is known about how these processes are related. Using purified Rous sarcoma virus Gag and Gag truncations, we studied the interrelation of Gag-Gag interaction and Gag-membrane interaction. Both by liposome binding and by surface plasmon resonance on a supported bilayer, Gag bound to membranes much more tightly than did matrix (MA), the isolated membrane binding domain. In principle, this difference could be explained either by protein-protein interactions leading to cooperativity in membrane binding or by the simultaneous interaction of the N-terminal MA and the C-terminal nucleocapsid (NC) of Gag with the bilayer, since both are highly basic. However, we found that NC was not required for strong membrane binding. Instead, the spacer peptide assembly domain (SPA), a putative 24-residue helical sequence comprising the 12-residue SP segment of Gag and overlapping the capsid (CA) C terminus and the NC N terminus, was required. SPA is known to be critical for proper assembly of the immature Gag lattice. A single amino acid mutation in SPA that abrogates assembly in vitro dramatically reduced binding of Gag to liposomes. In vivo, plasma membrane localization was dependent on SPA. Disulfide cross-linking based on ectopic Cys residues showed that the contacts between Gag proteins on the membrane are similar to the known contacts in virus-like particles. Taken together, we interpret these results to mean that Gag membrane interaction is cooperative in that it depends on the ability of Gag to multimerize. IMPORTANCE: The retroviral structural protein Gag has three major domains. The N-terminal MA domain interacts directly with the plasma membrane (PM) of cells. The central CA domain, together with immediately adjoining sequences, facilitates the assembly of thousands of Gag molecules into a lattice. The C-terminal NC domain interacts with the genome, resulting in packaging of viral RNA. For assembly in vitro with purified Gag, in the absence of membranes, binding of NC to nucleic acid somehow facilitates further Gag-Gag interactions that lead to formation of the Gag lattice. The contributions of MA-mediated membrane binding to virus particle assembly are not well understood. Here, we report that in the absence of nucleic acid, membranes provide a platform that facilitates Gag-Gag interactions. This study demonstrates that the binding of Gag, but not of MA, to membranes is cooperative and identifies SPA as a major factor that controls this cooperativity.


Subject(s)
Gene Products, gag/metabolism , Lipid Bilayers/metabolism , Protein Multimerization , Rous sarcoma virus/physiology , DNA Mutational Analysis , Gene Products, gag/genetics , Protein Binding , Protein Structure, Tertiary , Rous sarcoma virus/genetics
9.
J Virol ; 89(20): 10294-302, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26223638

ABSTRACT

UNLABELLED: The polyprotein Gag is the primary structural component of retroviruses. Gag consists of independently folded domains connected by flexible linkers. Interactions between the conserved capsid (CA) domains of Gag mediate formation of hexameric protein lattices that drive assembly of immature virus particles. Proteolytic cleavage of Gag by the viral protease (PR) is required for maturation of retroviruses from an immature form into an infectious form. Within the assembled Gag lattices of HIV-1 and Mason-Pfizer monkey virus (M-PMV), the C-terminal domain of CA adopts similar quaternary arrangements, while the N-terminal domain of CA is packed in very different manners. Here, we have used cryo-electron tomography and subtomogram averaging to study in vitro-assembled, immature virus-like Rous sarcoma virus (RSV) Gag particles and have determined the structure of CA and the surrounding regions to a resolution of ∼8 Å. We found that the C-terminal domain of RSV CA is arranged similarly to HIV-1 and M-PMV, whereas the N-terminal domain of CA adopts a novel arrangement in which the upstream p10 domain folds back into the CA lattice. In this position the cleavage site between CA and p10 appears to be inaccessible to PR. Below CA, an extended density is consistent with the presence of a six-helix bundle formed by the spacer-peptide region. We have also assessed the affect of lattice assembly on proteolytic processing by exogenous PR. The cleavage between p10 and CA is indeed inhibited in the assembled lattice, a finding consistent with structural regulation of proteolytic maturation. IMPORTANCE: Retroviruses first assemble into immature virus particles, requiring interactions between Gag proteins that form a protein layer under the viral membrane. Subsequently, Gag is cleaved by the viral protease enzyme into separate domains, leading to rearrangement of the virus into its infectious form. It is important to understand how Gag is arranged within immature retroviruses, in order to understand how virus assembly occurs, and how maturation takes place. We used the techniques cryo-electron tomography and subtomogram averaging to obtain a detailed structural picture of the CA domains in immature assembled Rous sarcoma virus Gag particles. We found that part of Gag next to CA, called p10, folds back and interacts with CA when Gag assembles. This arrangement is different from that seen in HIV-1 and Mason-Pfizer monkey virus, illustrating further structural diversity of retroviral structures. The structure provides new information on how the virus assembles and undergoes maturation.


Subject(s)
Capsid/ultrastructure , Gene Products, gag/chemistry , Rous sarcoma virus/ultrastructure , Capsid/chemistry , Cryoelectron Microscopy , Crystallography, X-Ray , Electron Microscope Tomography , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Products, gag/genetics , HIV-1/chemistry , HIV-1/ultrastructure , Mason-Pfizer monkey virus/chemistry , Mason-Pfizer monkey virus/ultrastructure , Models, Molecular , Peptide Hydrolases/chemistry , Peptide Hydrolases/isolation & purification , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Rous sarcoma virus/chemistry , Viral Proteins/chemistry , Viral Proteins/isolation & purification , Virus Assembly/physiology
10.
J Virol ; 89(20): 10371-82, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26246573

ABSTRACT

UNLABELLED: Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactions in vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particles in vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interaction in vitro, either by directly contacting acidic lipids or by promoting Gag multimerization. IMPORTANCE: Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible and can adopt a folded-over conformation on a lipid bilayer, implicating both the N and C termini in membrane binding. In addition, binding of Gag to membranes is diminished when either terminal domain is truncated. RSV Gag membrane association is significantly less sensitive than HIV Gag membrane association to lipid acyl chain saturation. These findings shed light on Gag assembly and membrane binding, critical steps in the viral life cycle and an untapped target for antiretroviral drugs.


Subject(s)
Cell Membrane/chemistry , Gene Products, gag/chemistry , Lipid Bilayers/chemistry , Rous sarcoma virus/chemistry , Virion/chemistry , Cholesterol/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Products, gag/genetics , Gene Products, gag/isolation & purification , HIV-1/chemistry , Hydrodynamics , Osmolar Concentration , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Phosphatidylinositol 4,5-Diphosphate/chemistry , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Rous sarcoma virus/ultrastructure , Virion/ultrastructure
11.
J Virol ; 88(10): 5617-29, 2014 May.
Article in English | MEDLINE | ID: mdl-24599998

ABSTRACT

UNLABELLED: Purified retroviral Gag proteins can assemble in vitro to form immature virus-like particles (VLPs). By cryoelectron tomography, Rous sarcoma virus VLPs show an organized hexameric lattice consisting chiefly of the capsid (CA) domain, with periodic stalk-like densities below the lattice. We hypothesize that the structure represented by these densities is formed by amino acid residues immediately downstream of the folded CA, namely, the short spacer peptide SP, along with a dozen flanking residues. These 24 residues comprise the SP assembly (SPA) domain, and we propose that neighboring SPA units in a Gag hexamer coalesce to form a six-helix bundle. Using in vitro assembly, alanine scanning mutagenesis, and biophysical analyses, we have further characterized the structure and function of SPA. Most of the amino acid residues in SPA could not be mutated individually without abrogating assembly, with the exception of a few residues near the N and C termini, as well as three hydrophilic residues within SPA. We interpret these results to mean that the amino acids that do not tolerate mutations contribute to higher-order structures in VLPs. Hydrogen-deuterium exchange analyses of unassembled Gag compared that of assembled VLPs showed strong protection at the SPA region, consistent with a higher-order structure. Circular dichroism revealed that a 29mer SPA peptide shifts from a random coil to a helix in a concentration-dependent manner. Analytical ultracentrifugation showed concentration-dependent self-association of the peptide into a hexamer. Taken together, these results provide strong evidence for the formation of a critical six-helix bundle in Gag assembly. IMPORTANCE: The structure of a retrovirus like HIV is created by several thousand molecules of the viral Gag protein, which assemble to form the known hexagonal protein lattice in the virus particle. How the Gag proteins pack together in the lattice is incompletely understood. A short segment of Gag known to be critical for proper assembly has been hypothesized to form a six-helix bundle, which may be the nucleating event that leads to lattice formation. The experiments reported here, using the avian Rous sarcoma virus as a model system, further define the nature of this segment of Gag, show that it is in a higher-order structure in the virus particle, and provide the first direct evidence that it forms a six-helix bundle in retrovirus assembly. Such knowledge may provide underpinnings for the development of antiretroviral drugs that interfere with virus assembly.


Subject(s)
Gene Products, gag/metabolism , Protein Interaction Domains and Motifs , Protein Multimerization , Rous sarcoma virus/physiology , Virus Assembly , Amino Acid Substitution , Circular Dichroism , DNA Mutational Analysis , Gene Products, gag/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , Rous sarcoma virus/genetics , Ultracentrifugation
12.
Proc Natl Acad Sci U S A ; 109(46): 18761-6, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23010924

ABSTRACT

Membrane binding of the HIV-1 group-specific antigen (Gag) structural protein, a critical step in viral assembly at the plasma membrane, is mediated by the myristoylated, highly basic matrix (MA) domain, which interacts with negatively charged lipids in the inner leaflet. According to a popular model, virus particles bud from membrane rafts, microdomains enriched in cholesterol and high-melting phospholipids with higher order than found outside rafts. How Gag might recognize membrane rafts, if they exist in the inner leaflet, is unknown. Using a liposome flotation assay with proteins translated in vitro, we investigated whether Gag can sense the composition of the hydrophobic part of the bilayer, by fixing lipid head group composition and varying hydrophobic properties. In liposomes composed solely of phosphatidylserine and phosphatidylcholine, and with the same overall membrane negative charge, Gag strongly preferred lipids with both acyl chains unsaturated over those with only one chain unsaturated. Adding cholesterol increased Gag binding and led to closer packing of phospholipids. However, higher membrane order, as measured by electron spin resonance, was not correlated with increased Gag binding. Gag proteins from two other retroviruses gave similar results. These liposome binding preferences were qualitatively recapitulated by purified myristoylated HIV-1 MA. Phosphatidylinositol 4,5-bisphosphate and cholesterol enhanced binding in an additive manner. Taken together, these results show that Gag is sensitive both to the acyl chains of phosphatidylserine and to cholesterol concentration and other details of the membrane environment. These observations may help explain how retroviruses acquire a raft-like lipid composition.


Subject(s)
Cholesterol/chemistry , HIV-1/chemistry , Liposomes/chemistry , gag Gene Products, Human Immunodeficiency Virus/chemistry , Cholesterol/metabolism , HIV-1/metabolism , Liposomes/metabolism , Lipoylation , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Binding , gag Gene Products, Human Immunodeficiency Virus/metabolism
13.
J Virol ; 87(24): 13598-608, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24109216

ABSTRACT

In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV.


Subject(s)
Cell Membrane/virology , Gene Products, gag/chemistry , Gene Products, gag/metabolism , HIV Infections/virology , HIV-1/metabolism , Rous sarcoma virus/metabolism , Sarcoma, Avian/virology , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cell Line , Cytoplasm/virology , Gene Products, gag/genetics , HIV-1/chemistry , HIV-1/genetics , Humans , Protein Multimerization , Protein Structure, Tertiary , Quail , Rous sarcoma virus/chemistry , Rous sarcoma virus/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics
14.
EMBO J ; 27(9): 1411-20, 2008 May 07.
Article in English | MEDLINE | ID: mdl-18401344

ABSTRACT

In the Rous sarcoma virus (RSV) Gag protein, the 25 amino-acid residues of the p10 domain immediately upstream of the CA domain are essential for immature particle formation. We performed systematic mutagenesis on this region and found excellent correlation between the amino-acid side chains required for in vitro assembly and those that participate in the p10-CA dimer interface in a previously described crystal structure. We introduced exogenous cysteine residues that were predicted to form disulphide bonds across the dimer interface. Upon oxidation of immature particles, a disulphide-linked Gag hexamer was formed, implying that p10 participates in and stabilizes the immature Gag hexamer. This is the first example of a critical interaction between two different Gag domains. Molecular modeling of the RSV immature hexamer indicates that the N-terminal domains of CA must expand relative to the murine leukaemia virus mature hexamer to accommodate the p10 contact; this expansion is strikingly similar to recent cryotomography results for immature human immunodeficiency virus particles.


Subject(s)
Gene Products, gag/chemistry , Gene Products, gag/metabolism , Rous sarcoma virus/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Chickens , Dimerization , Gene Products, gag/genetics , Immunoblotting , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Rous sarcoma virus/genetics
15.
J Virol ; 85(20): 10851-60, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21813603

ABSTRACT

The MA domain of the retroviral Gag protein mediates interactions with the plasma membrane, which is the site of productive virus release. HIV-1 MA has a phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] binding pocket; depletion of this phospholipid from the plasma membrane compromises Gag membrane association and virus budding. We used multiple methods to examine the possible role of PI(4,5)P2 in Gag-membrane interaction of the alpharetrovirus Rous sarcoma virus (RSV). In contrast to HIV-1, which was tested in parallel, neither membrane localization of RSV Gag-GFP nor release of virus-like particles was affected by phosphatase-mediated depletion of PI(4,5)P2 in transfected avian cells. In liposome flotation experiments, RSV Gag required acidic lipids for binding but showed no specificity for PI(4,5)P2. Mono-, di-, and triphosphorylated phosphatidylinositol phosphate (PIP) species as well as high concentrations of phosphatidylserine (PS) supported similar levels of flotation. A mutation that increases the overall charge of RSV MA also enhanced Gag membrane binding. Contrary to previous reports, we found that high concentrations of PS, in the absence of PIPs, also strongly promoted HIV-1 Gag flotation. Taken together, we interpret these results to mean that RSV Gag membrane association is driven by electrostatic interactions and not by any specific association with PI(4,5)P2.


Subject(s)
Cell Membrane/metabolism , Gene Products, gag/metabolism , Liposomes/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Rous sarcoma virus/physiology , Virus Release , Animals , Birds , Cell Line , HIV-1/physiology , Protein Binding
16.
Nucleic Acids Res ; 38(15): e154, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20542918

ABSTRACT

We developed a powerful expression system to produce aptamers and other types of functional RNA in yeast to examine their effects. Utilizing the intron homing process, the aptamer-coding sequences were integrated into hundreds of rRNA genes, and the aptamers were transcribed at high levels by RNA polymerase I without any additional promoter being introduced into the cell. We used this system to express an aptamer against the heat shock factor 1 (HSF1), a conserved transcription factor responsible for mobilizing specific genomic expression programs in response to stressful conditions such as elevated temperature. We observed a temperature sensitive growth retardation phenotype and specific decrease of heat shock gene expression. As HSF1 enables and promotes malignant growth and metastasis in mammals, and this aptamer binds yeast HSF1 and its mammalian ortholog with equal affinity, the results presented here attest to the potential of this aptamer as a specific and effective inhibitor of HSF1 activity.


Subject(s)
Aptamers, Nucleotide/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Gene Expression Regulation , Introns , Transcription Factors/antagonists & inhibitors , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Gene Knockdown Techniques , Heat Shock Transcription Factors , Phenotype , RNA/chemistry , Saccharomyces cerevisiae/genetics
17.
J Virol ; 84(13): 6276-87, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20392845

ABSTRACT

The efficient release of newly assembled retrovirus particles from the plasma membrane requires the recruitment of a network of cellular proteins (ESCRT machinery) normally involved in the biogenesis of multivesicular bodies and in cytokinesis. Retroviruses and other enveloped viruses recruit the ESCRT machinery through three classes of short amino acid consensus sequences termed late domains: PT/SAP, PPXY, and LYPX(n)L. The major late domain of Rous sarcoma virus (RSV) has been mapped to a PPPY motif in Gag that binds members of the Nedd4 family of ubiquitin ligases. RSV Gag also contains a second putative late domain motif, LYPSL, positioned 5 amino acids downstream of PPPY. LYPX(n)L motifs have been shown to support budding in other retroviruses by binding the ESCRT adaptor protein Alix. To investigate a possible role of the LYPSL motif in RSV budding, we constructed PPPY and LYPSL mutants in the context of an infectious virus and then analyzed the budding rates, spreading profiles, and budding morphology. The data imply that the LYPSL motif acts as a secondary late domain and that its role in budding is amplified in the absence of a fully functional PPPY motif. The LYPXL motif proved to be a stronger late domain when an aspartic acid was substituted for the native serine, recapitulating the properties of the LYPDL late domain of equine infectious anemia virus. The overexpression of human Alix in the absence of a fully functional PPPY late domain partially rescued both the viral budding rate and viral replication, supporting a model in which the RSV LYPSL motif mediates budding through an interaction with the ESCRT adaptor protein Alix.


Subject(s)
Gene Products, gag/metabolism , Rous sarcoma virus/physiology , Virus Release , Virus Replication , Amino Acid Substitution , Animals , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Chickens , Endosomal Sorting Complexes Required for Transport/metabolism , Gene Products, gag/genetics , Humans , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary
18.
J Virol ; 84(22): 11729-36, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20810738

ABSTRACT

The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.


Subject(s)
Gene Products, gag/chemistry , HIV-1/chemistry , Mason-Pfizer monkey virus/chemistry , Rous sarcoma virus/chemistry , Virion/physiology , Amino Acid Sequence , Cell Line , Conserved Sequence , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV-1/genetics , HIV-1/physiology , Humans , Mason-Pfizer monkey virus/genetics , Mason-Pfizer monkey virus/physiology , Molecular Sequence Data , Protein Structure, Tertiary , Rous sarcoma virus/genetics , Rous sarcoma virus/physiology , Sequence Alignment , Virion/chemistry , Virion/genetics , Virus Assembly
19.
Nat Commun ; 12(1): 3226, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050170

ABSTRACT

Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.


Subject(s)
Capsid Proteins/metabolism , Capsid/ultrastructure , Phytic Acid/metabolism , Rous sarcoma virus/ultrastructure , Virus Assembly , Capsid/metabolism , Capsid Proteins/isolation & purification , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography , Gene Knockout Techniques , HEK293 Cells , Humans , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Multimerization , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Rous sarcoma virus/pathogenicity , Rous sarcoma virus/physiology , Single Molecule Imaging , Transfection , Virus Release
20.
Biochemistry ; 49(19): 4006-17, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20387899

ABSTRACT

Assembly of retrovirus particles is promoted by interaction of the Gag polyprotein with RNA. Nonspecific RNA association with the nucleocapsid domain (NC) of Gag induces the dimerization of Gag through protein-protein contacts in the capsid domain (CA), followed by higher order assembly to form the immature virus particle. NMR relaxation studies were conducted to investigate the initial steps of Rous sarcoma virus (RSV) assembly by examining the association with nucleic acid of a fragment of Gag comprising the C-terminal domain of CA (CTD) postulated to mediate Gag dimerization, the spacer region between CA and NC (SP), and NC. This fragment, CTD-SP-NC (residues 394-577), spans the critical SP region and allows assessment of this key Gag-nucleic acid interaction in the context of the Gag polyprotein rather than the isolated domains. Main-chain amide relaxation of CTD-SP-NC was measured in the absence and presence of (GT)(4), an 8-mer DNA oligonucleotide that binds tightly to the polyprotein but is too short to promote Gag dimerization. The results show that the CTD and NC domains tumble independently. In contrast, the two zinc finger domains within NC are rotationally coupled in both the unbound and bound states, even though only the first zinc finger appears to make direct contact with (GT)(4). In addition, the NMR data indicate that SP and flanking residues undergo a conformational exchange process that is slowed in the presence of (GT)(4). This region around SP where relaxation is strongly affected by (GT)(4) binding is nearly identical to the assembly domain defined previously by mutagenesis studies. Other changes in relaxation induced by (GT)(4) implicate conformational perturbations of helices 1 and 4 in CTD. On the basis of the combined data, we propose a model for the promotion of Gag dimerization by RNA association in which NC-RNA binding disrupts an assembly inhibitory, intramolecular interaction involving SP and CTD. Disruption of this intramolecular interaction is proposed to enhance the accessibility of the Gag dimer contact surface and release the assembly domain to promote intermolecular oligomerization.


Subject(s)
Gene Products, gag/chemistry , Gene Products, gag/metabolism , RNA, Viral/chemistry , Rous sarcoma virus/metabolism , Base Sequence , Binding Sites , Gene Products, gag/antagonists & inhibitors , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Protein Structure, Secondary , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL