Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Environ Sci Technol ; 49(16): 9936-44, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26214709

ABSTRACT

Infiltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte Vallisneria spiralis (L.) or the gastropod Viviparus viviparus (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the effects of treatments on sediment permeability. The grazer Viviparus viviparus significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce significant changes in hydraulic conductivity although Vallisneria spiralis affected photosynthetic activity of biofilm. Finally, our results obtained with Viviparus viviparus are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems.


Subject(s)
Ecology/methods , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Biofilms , France , Geologic Sediments/chemistry , Hydrolysis , Linear Models , Photosynthesis , Photosystem II Protein Complex/metabolism , Water
2.
Sci Total Environ ; 876: 162750, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36907410

ABSTRACT

Knowledge about groundwater origins and their interactions with surface water is fundamental to assess their vulnerability. In this context, hydrochemical and isotopic tracers are useful tools to investigate water origins and mixing. More recent studies examined the relevance of contaminants of emerging concern (CECs) as co-tracers to distinguish sources contributing to groundwater bodies. However, these studies focused on known and targeted CECs a priori selected regarding their origin and/or concentrations. This study aimed to improve these multi-tracer approaches using passive sampling and qualitative suspect screening by exploring a larger variety of historical and emerging concern contaminants in combination with hydrochemistry and water molecule isotopes. With this objective, an in-situ study was conducted in a drinking water catchment area located in an alluvial aquifer recharged by several water sources (both surface and groundwater sources). CECs determined by passive sampling and suspect screening allowed to provide in-depth chemical fingerprints of groundwater bodies by enabling the investigation of >2500 compounds with an increased analytical sensitivity. Obtained cocktails of CECs were discriminating enough to be used as chemical tracer in combination with hydrochemical and isotopic tracers. In addition, the occurrence and type of CECs contributed to a better understanding of groundwater-surface water interactions and highlighted short-time hydrological processes. Furthermore, the use of passive sampling with suspect screening analysis of CECs lead to a more realistic assessment and mapping of groundwater vulnerability.

3.
Sci Total Environ ; 865: 161115, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36581297

ABSTRACT

Stormwater infiltration systems (SIS) are designed to collect and infiltrate urban stormwater runoff into the ground for flood risk mitigation and artificial aquifer recharge. Many studies have demonstrated that infiltration practices can impact groundwater chemistry and microbiology. However, quantitative assessments of the hydrogeological factors responsible of these changes remain scarce. Thus, the present study aimed to quantitatively test whether changes of groundwater chemistry and microbiology induced by SIS were linked to two factors associated with vadose zone properties (vadose zone thickness, water transit time from surface to groundwater) and one factor associated with groundwater recharge rate (assessed by groundwater table elevation during rain events). To evaluate changes in chemistry (NO3-, PO43- and dissolved organic carbon concentrations), groundwater samples were collected in wells located in SIS-impacted and non-SIS-impacted zones during experimental periods of 10 days. During the same periods, clay beads were incubated in the same wells to measure changes of groundwater microbial biofilms (microbial biomass, dehydrogenase and hydrolytic activities) induced by SIS. Results showed that changes in PO43- supplied to groundwater during stormwater infiltration was negatively correlated with vadose zone thickness. A short water transit time from surface to groundwater increased dissolved organic carbon concentrations in the aquifer which, in turn, increased biofilm biomasses in groundwater. The groundwater recharge rate during rain events (assessed by groundwater table elevation) diluted NO3- concentrations in the aquifer but also influenced the changes of biofilm activities induced by SIS. Groundwater recharge rate during rain events probably increased the fluxes of water and dissolved organic carbon in groundwater, stimulating the activity of microbial biofilms. Overall, the present study is the first to quantify conjointly several factors and processes (water transfer, dilution, solute fluxes) that could explain the impact of stormwater infiltration on chemistry and/or microbiology in groundwater.


Subject(s)
Dissolved Organic Matter , Groundwater , Groundwater/chemistry , Rain , Clay , Biomass
4.
Microb Ecol ; 61(4): 885-97, 2011 May.
Article in English | MEDLINE | ID: mdl-21431934

ABSTRACT

The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 µg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH4⁺, 53-717 µg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH4⁺, the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.


Subject(s)
Bacteria/isolation & purification , Fungi/isolation & purification , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Water Microbiology , Bacteria/classification , Bacteria/genetics , Biomass , Environmental Monitoring , Fungi/classification , Fungi/genetics , Rain/chemistry , Urban Renewal
5.
Sci Total Environ ; 755(Pt 1): 142451, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33017764

ABSTRACT

Stormwater infiltration systems (SIS) have been set up to collect and infiltrate urban stormwater runoff in order to reduce flooding and to artificially recharge aquifers. Such practices produce environmental changes in shallow groundwater ecosystems like an increase in organic matter concentrations that could drive changes in structure and functions of groundwater microbial communities. Previous works suggested that SIS influence groundwater physico-chemistry during either rainy and dry period but no study has examined the impact of SIS on groundwater microorganisms during both periods. This study aimed to fill this gap by assessing SIS impacts on groundwater quality parameters in three SIS with vadose zone thickness < 3 m during two contrasting meteorological conditions (rainy/dry periods). Physicochemical (dissolved organic carbon and nutrient concentrations) and microbial variables (biomass, dehydrogenase and hydrolytic activities, and bacterial community structure) were assessed on SIS-impacted and non-SIS-impacted zones of the aquifers for the three SIS. Using clay beads incubated in the aquifer to collect microbial biofilm, we show that SIS increased microbial activities, bacterial richness and diversity in groundwater biofilms during the rainy period but not during the dry period. In contrast, the significant differences in dissolved organic carbon and nutrient concentrations, biofilm biomass and bacterial community structures (Bray-Curtis distances, relative abundances of main bacterial orders) measured between SIS-impacted and non-SIS-impacted zones of the aquifer were comparable during the two periods. These results suggest that structural indicators of biofilm like biomass were probably controlled by long-term effects of SIS on concentrations of dissolved organic matter and nutrients whereas biofilm activities and bacterial richness were temporally stimulated by stormwater runoff infiltrations during the rainy period. This decoupling between the structural and functional responses of groundwater biofilms to stormwater infiltration practices suggests that biofilms functions were highly reactive to fluxes associated with aquifer recharge events.


Subject(s)
Ecosystem , Groundwater , Bacteria , Biofilms , Rain
6.
Sci Total Environ ; 795: 148842, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34328914

ABSTRACT

Bioturbation activity of tubificid worms has been recognized as a key process influencing organic matter processing and nutrient cycling in benthic aquatic ecosystems. This activity is expected to modify benthic microbial communities by affecting the physical and chemical environment in sediments. Nevertheless, quantifications of bacterial community changes associated with bioturbation in freshwater ecosystems are still lacking. The present study aimed at evaluating the impact of tubificid worms on bacterial community structure using NGS approach (16S metabarcoding) and long (6 months) laboratory experiments on four heterotrophic wetland sediments. Worm bioturbation activity significantly stimulated biogeochemical processes at the water-sediment interface but only had a marginally significant effect on bacterial community structures. Yet, bacterial diversity was consistently reduced in presence of worms. Such decrease could be associated with the stimulation of organic matter mineralization by worms, leading to a reduction of the diversity of trophic niches available for bacterial species. The slight changes in bacterial community structures induced by bioturbation did not appear to control biogeochemical processes. Thus, the stimulation of biogeochemical processes by worm bioturbation was more associated with a stimulation of the initial bacterial community than with a drastic change in bacterial communities induced by worms.


Subject(s)
Geologic Sediments , Water Pollutants, Chemical , Bacterial Physiological Phenomena , Ecosystem , Water Pollutants, Chemical/analysis , Wetlands
7.
Environ Pollut ; 266(Pt 2): 115387, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32829126

ABSTRACT

The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.


Subject(s)
Environmental Pollutants , Groundwater , Pesticides/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Rain , Soil
8.
Talanta ; 208: 120307, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31816757

ABSTRACT

This study describes the development of a novel Empore™ disk-based passive sampler specially adapted to groundwater monitoring. The sampler was calibrated in the laboratory using conditions that corresponded to groundwater (i.e. matrix medium, water temperature, flow rate and water flow across the disks). The retention and elution performance for sixteen semi-polar and polar pollutants on the Empore™ disk (47 mm diameter, SDB-XC) was evaluated. Recoveries were ~80% for the majority of compounds. Sampler uptake kinetics were measured over fourteen days at three concentrations (10, 100 and 500 ng L-1) and the sampling rate (RS) calculated for four compounds. There was no influence of concentration of the test analyte on the uptake profile; with mean RS varying between 0.018 ±â€¯0.007 L day-1 and 0.047 ±â€¯0.001 L day-1. Passive samplers were deployed in twelve characterized groundwater wells near Lyon (France). Atrazine, atrazine-desethyl and diuron were the main pollutants found with a maximum time-weighted concentration of 61 ±â€¯3, 62 ±â€¯24 and 127 ±â€¯49 ng L-1 respectively.

9.
Sci Total Environ ; 672: 253-263, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30959292

ABSTRACT

Groundwater systems are being increasingly used to provide potable and other water supplies. Due to human activities, a range of organic pollutants is often detected in groundwater. One source of groundwater contamination is via stormwater infiltration basins, however, there is little information on the types of compounds present in these collection systems and their influence on the underlying groundwater. We developed an analytical strategy based on the use of passive sampling combined with liquid chromatography/high resolution quadrupole-time-of-flight mass spectrometry for screening for the presence of pesticide and pharmaceutical compounds in groundwater and stormwater runoff. Empore™ disk-based passive samplers (SDB-RPS and SDB-XC sorbents) were exposed, using for the first time a new specially designed deployment rig, for 10 days during a rainfall event in five different stormwater infiltration systems around Lyon, France. Stormwater runoff and groundwater (via a well, upstream and downstream of each basin) was sampled. Exposed Empore™ disks were solvent extracted (acetone and methanol) and the extracts analysed using a specific suspect compound screening workflow. High resolution mass spectrometry coupled with a suspect screening approach was found to be a useful tool as it allows a more comprehensive analysis than with targeted screening whilst being less time consuming than non-targeted screening. Using this analytical approach, 101 suspect compounds were tentatively identified, with 40 of this set being subsequently confirmed. The chemicals detected included fungicides, herbicides, insecticides, indicators of human activity, antibiotics, antiepileptics, antihypertensive and non-steroidal anti-inflammatory drugs as well as their metabolites. Polar pesticides were mainly detected in groundwater and pharmaceuticals were more frequently found in runoff. In terms of detection frequency of the pollutants, groundwater impacted by infiltration was found not to be significantly more contaminated than non-impacted groundwater.

10.
Water Res ; 39(11): 2207-18, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15935436

ABSTRACT

For the past 20 years, the increased development and routine application of molecular-based techniques has made it possible to carry out detailed evaluations of the biodiversity of aquatic microbial communities. It also offers great opportunities for finding out how this parameter responds to various environmental stresses. Most of these approaches involve an initial PCR amplification of a target, which is generally located within the ribosomal operon. The amplification is achieved by means of primers that are specific to the organisms of interest. The second step involves detecting sequence variations in the PCR fragments either by a cloning/sequencing analysis, which provides a complete characterization of the fragments, or by an electrophoretic analysis, which provides a visual separation of the mixture of fragments according to sequence polymorphism (denaturing or temperature gradient gel electrophoresis, single strand conformation polymorphism) or length polymorphism (terminal-restriction fragment length polymorphism, automated ribosomal intergenic spacer analysis). Other non-PCR-based methods are also commonly used, such as fluorescence in-situ hybridization and DNA re-association analysis. Depending on the technique used, the information gained can be quite different. Moreover, some of these analyses may be rather onerous in terms of time and money, and so not always suitable for screening large numbers of samples. The most widely used techniques are discussed in this paper to illustrate the principles, advantages and shortcomings of each of them. Finally, we will conclude by evaluating the techniques and discussing some emerging molecular techniques, such as real-time PCR and the microarray technique.


Subject(s)
Bacteria/genetics , Biodiversity , Water Microbiology , Ecosystem , Genetic Variation , Microarray Analysis/methods , Polymerase Chain Reaction/methods
11.
Environ Sci Pollut Res Int ; 20(3): 1450-60, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22684878

ABSTRACT

Discharges of saline effluents into rivers can lead to risks for local aquatic ecosystems. A specific ecological risk assessment methodology has been developed to propose a management tool to organisations responsible for managing rivers and industrial companies producing saline effluents. This methodology involves the detailed description of the spatiotemporal system concerned, the choice of ecological targets to be preserved, and the performance of bioassays adapted to each of the compartments of the river. Following development, it was applied to an industrial effluent in eastern France. For the scenario studied, results obtained suggest a high risk for the organisms of the water column and a low risk for the organisms of the periphyton. This difference can be explained by the structure of the latter which integrate extracellular polymers secreted by the organisms of the biofilm, forming a gel with a porous structure that acts as a barrier to diffusion. The methodology formulated permitted identifying the critical points of the spatiotemporal system studied and then using them as the basis for making well-grounded proposals for management. Lastly, proposals to improve the methodology itself are made, especially concerning the integration of the sediment compartment in the version formulated initially.


Subject(s)
Industrial Waste/adverse effects , Rivers/chemistry , Salts/toxicity , Water Pollutants, Chemical/toxicity , Aquatic Organisms/drug effects , Ecology , Ecosystem , Environmental Monitoring/methods , France , Models, Theoretical , Risk Assessment , Salts/analysis , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 431: 375-84, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22705873

ABSTRACT

The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the "substances" approach derived from the European methodology for assessing new substances placed on the market, and the "matrix" approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, …). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments "1" and "2" presented a low risk for the peripheral aquatic ecosystems while sediment "3" presented a high risk.


Subject(s)
Aquatic Organisms , Ecotoxicology/methods , Environmental Exposure , Geologic Sediments , Risk Assessment/methods , Animals , Environmental Exposure/analysis , Environmental Pollution , France , Geologic Sediments/analysis , Geologic Sediments/chemistry , Waste Management , Water Pollutants, Chemical/toxicity
13.
Res Microbiol ; 162(9): 908-14, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21810469

ABSTRACT

Lagoons and coastal waters are contaminated by a large number of chemicals discharged directly or carried by rivers and runoff water that drain catchment areas in which agricultural activities take place. The inflow of these exogenous compounds constitutes a genuine risk for the health of ecosystems. It is therefore important to detect their presence in the natural environment before they cause irreversible damage. Here we present a study aimed at developing a tool for rapid detection of pesticides and other chemicals in environments liable to be contaminated, in order to propose an early warning system for decision-makers. The study carried out focuses on two herbicides commonly encountered in the environment, i.e. diuron and glyphosate, as well as several of their photodegradation products (DCPU, DCPMU, AMPA). The results presented contribute toward developing a biosensor based on measuring the metabolic activities of immobilized unicellular marine algae. The sensor's operation is based on measuring the esterase localized on the external membrane of the algae cells and chlorophyll fluorescence. The tests carried out show that the signal emitted by the sensor is disturbed by the presence of the two herbicides studied. The system proposed appears useful as a tool for controlling environments requiring monitoring.


Subject(s)
Biosensing Techniques/methods , Cells, Immobilized/enzymology , Diuron/analysis , Environmental Monitoring/methods , Esterases/metabolism , Glycine/analogs & derivatives , Rivers/chemistry , Seawater/chemistry , Biosensing Techniques/instrumentation , Cells, Immobilized/chemistry , Chlorophyll/metabolism , Chlorophyta/chemistry , Chlorophyta/enzymology , Diatoms/chemistry , Diatoms/enzymology , Electrodes , Environmental Monitoring/instrumentation , Fluorescence , Glycine/analysis , Herbicides/analysis , Mediterranean Sea , Pesticides/analysis , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL