Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Immunity ; 46(2): 233-244, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28214225

ABSTRACT

Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings.


Subject(s)
Arginase/immunology , Dendritic Cells/immunology , Immune Tolerance/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Signal Transduction/immunology , Animals , Arginase/metabolism , Arginine/immunology , Arginine/metabolism , Blotting, Western , Dendritic Cells/metabolism , Female , Gene Expression Profiling , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcriptome , Tryptophan/immunology , Tryptophan/metabolism
2.
Anal Chem ; 96(4): 1468-1477, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38236168

ABSTRACT

Untargeted metabolomics is a growing field, in which recent advances in high-resolution mass spectrometry coupled with liquid chromatography (LC-MS) have facilitated untargeted approaches as a result of improvements in sensitivity, mass accuracy, and resolving power. However, a very large amount of data are generated. Consequently, using computational tools is now mandatory for the in-depth analysis of untargeted metabolomics data. This article describes MetAbolomics ReSearch (MARS), an all-in-one vendor-agnostic graphical user interface-based software applying LC-MS analysis to untargeted metabolomics. All of the analytical steps are described (from instrument data conversion and processing to statistical analysis, annotation/identification, quantification, and preliminary biological interpretation), and tools developed to improve annotation accuracy (e.g., multiple adducts and in-source fragmentation detection, trends across samples, and the MS/MS validator) are highlighted. In addition, MARS allows in-house building of reference databases, to bypass the limits of freely available MS/MS spectra collections. Focusing on the flexibility of the software and its user-friendliness, which are two important features in multipurpose software, MARS could provide new perspectives in untargeted metabolomics data analysis.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid , Metabolomics/methods , Software
3.
Nat Immunol ; 12(9): 870-8, 2011 Jul 31.
Article in English | MEDLINE | ID: mdl-21804557

ABSTRACT

Regulation of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile modulator of immunity. In inflammation, interferon-γ is the main inducer of IDO for the prevention of hyperinflammatory responses, yet IDO is also responsible for self-tolerance effects in the longer term. Here we show that treatment of mouse plasmacytoid DCs (pDCs) with transforming growth factor-ß (TGF-ß) conferred regulatory effects on IDO that were mechanistically separable from its enzymic activity. We found that IDO was involved in intracellular signaling events responsible for the self-amplification and maintenance of a stably regulatory phenotype in pDCs. Thus, IDO has a tonic, nonenzymic function that contributes to TGF-ß-driven tolerance in noninflammatory contexts.


Subject(s)
Adaptive Immunity , Dendritic Cells , Immune Tolerance , Indoleamine-Pyrrole 2,3,-Dioxygenase , Signal Transduction/immunology , Transforming Growth Factor beta/immunology , Adaptive Immunity/drug effects , Animals , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/enzymology , Dendritic Cells/immunology , Humans , Hypersensitivity/immunology , Immune Tolerance/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/pharmacology , Tryptophan/metabolism
4.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32024760

ABSTRACT

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Allosteric Regulation , Allosteric Site , Animals , Biocatalysis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Leukocytes, Mononuclear/metabolism , Male , Mice, Knockout , Multiple Sclerosis/enzymology , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Serotonin/analogs & derivatives , Serotonin/chemistry , Serotonin/metabolism , Tryptophan/metabolism
5.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003426

ABSTRACT

Indoleamine 2,3-dioxygenase 2 (IDO2) is a paralog of Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan-degrading enzyme producing immunomodulatory molecules. However, the two proteins are unlikely to carry out the same functions. IDO2 shows little or no tryptophan catabolic activity and exerts contrasting immunomodulatory roles in a context-dependent manner in cancer and autoimmune diseases. The recently described potential non-enzymatic activity of IDO2 has suggested its possible involvement in alternative pathways, resulting in either pro- or anti-inflammatory effects in different models. In a previous study on non-small cell lung cancer (NSCLC) tissues, we found that IDO2 expression revealed at the plasma membrane level of tumor cells was significantly associated with poor prognosis. In this study, the A549 human cell line, basally expressing IDO2, was used as an in vitro model of human lung adenocarcinoma to gain more insights into a possible alternative function of IDO2 different from the catalytic one. In these cells, immunocytochemistry and isopycnic sucrose gradient analyses confirmed the IDO2 protein localization in the cell membrane compartment, and the immunoprecipitation of tyrosine-phosphorylated proteins revealed that kinase activities can target IDO2. The different localization from the cytosolic one and the phosphorylation state are the first indications for the signaling function of IDO2, suggesting that the IDO2 non-enzymatic role in cancer cells is worthy of deeper understanding.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Phosphorylation , Tryptophan/metabolism
6.
EMBO Rep ; 21(12): e49756, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33159421

ABSTRACT

Knowledge of a protein's spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long-lasting immunosuppression. Whether the two activities-namely, the catalytic and signaling functions-are spatially segregated has been unclear. We found that, under conditions favoring signaling rather than catabolic events, IDO1 shifts from the cytosol to early endosomes. The event requires interaction with class IA phosphoinositide 3-kinases (PI3Ks), which become activated, resulting in full expression of the immunoregulatory phenotype in vivo in pDCs as resulting from IDO1-dependent signaling events. Thus, IDO1's spatial dynamics meet the needs for short-acting as well as durable mechanisms of immune suppression, both under acute and chronic inflammatory conditions. These data expand the theoretical basis for an IDO1-centered therapy in inflammation and autoimmunity.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Phosphatidylinositol 3-Kinases , Dendritic Cells/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction
7.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054973

ABSTRACT

Among the 20 amino acids needed for protein synthesis, Tryptophan (Trp) is an aromatic amino acid fundamental not only for the synthesis of the major components of living cells (namely, the proteins), but also for the maintenance of cellular homeostasis [...].


Subject(s)
Metabolic Networks and Pathways , Protein Biosynthesis , Tryptophan/metabolism , Disease Susceptibility , Homeostasis , Humans , Protein Biosynthesis/physiology
8.
Molecules ; 27(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080419

ABSTRACT

L-Tryptophan (TRP) metabolites and related biomarkers play crucial roles in physiological functions, and their imbalances are implicated in central nervous system pathologies and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, schizophrenia and depression. The measurement of TRP metabolites and related biomarkers possesses great potential to elucidate the disease mechanisms, aid preclinical drug development, highlight potential therapeutic targets and evaluate the outcomes of therapeutic interventions. An effective, straightforward, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of 24 TRP-related compounds in miniaturised murine whole blood samples. Sampling and sample pretreatment miniaturisation were achieved thanks to the development of a volumetric dried blood microsampling approach. Volumetric absorptive microsampling (VAMS) allows the accurate sampling of microvolumes of blood with advantages including, but not limited to, minimal sampling invasiveness, logistical improvements, method sustainability in terms of solvents and energy consumption, and improvement of animal studies in the framework of the 3Rs (Replacement, Reduction and Refinement) principles on animal welfare. The VAMS-LC-MS/MS method exhibited good selectivity, and correlation coefficient values for the calibration curves of each analyte were >0.9987. The limits of quantitation ranged from 0.1 to 25 ng/mL. The intra- and inter-day precisions in terms of RSD were <9.6%. All analytes were stable in whole blood VAMS samples stored at room temperature for at least 30 days with analyte losses < 14%. The developed method was successfully applied to the analysis of biological samples from mice, leading to the unambiguous determination of all the considered target analytes. This method can therefore be applied to analyse TRP metabolites and related biomarkers levels to monitor disease states, perform mechanistic studies and investigate the outcomes of therapeutic interventions.


Subject(s)
Tandem Mass Spectrometry , Tryptophan , Animals , Biomarkers , Blood Specimen Collection/methods , Chromatography, Liquid/methods , Dried Blood Spot Testing/methods , Mice , Tandem Mass Spectrometry/methods
9.
J Autoimmun ; 115: 102509, 2020 12.
Article in English | MEDLINE | ID: mdl-32605792

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) - the enzyme catalyzing the rate-limiting step of tryptophan catabolism along the kynurenine pathway - belongs to the class of inhibitory immune checkpoint molecules. Such regulators of the immune system are crucial for maintaining self-tolerance and thus, when properly working, preventing autoimmunity. A dysfunctional IDO1 has recently been associated with a specific single nucleotide polymorphism (SNP) and with the occurrence of autoimmune diabetes and multiple sclerosis. Many genetic alterations of IDO1 have been proposed being related with dysimmune disorders. However, the molecular and functional meaning of variations in IDO1 exomes as well as the promoter region remains a poorly explored field. In the present study, we identified a rare missense variant (rs751360195) at the IDO1 gene in a patient affected by coeliac disease, thyroiditis, and selective immunoglobulin A deficiency. Molecular and functional studies demonstrated that the substitution of lysine (K) at position 257 with a glutamic acid (E) results in an altered IDO1 protein that undergoes a rapid protein turnover. This genotype-to-phenotype relation is produced by peripheral blood mononuclear cells (PBMCs) of the patient bearing this variation and is associated with a specific phenotype (i.e., impaired tryptophan catabolism and defective mechanisms of immune tolerance). Thus decoding functional mutations of the IDO1 exome may provide clinically relevant information exploitable to personalize therapeutic interventions.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Myelodysplastic Syndromes/genetics , Proteasome Endopeptidase Complex/metabolism , DNA Mutational Analysis , Exons/genetics , HEK293 Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Dynamics Simulation , Mutation, Missense , Myelodysplastic Syndromes/immunology , Proteolysis
10.
Nature ; 511(7508): 184-90, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24930766

ABSTRACT

Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.


Subject(s)
Disease Resistance/genetics , Disease Resistance/immunology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Bacterial Infections/immunology , Bacterial Infections/metabolism , Disease Resistance/drug effects , Endotoxemia/genetics , Endotoxemia/immunology , Endotoxemia/metabolism , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/enzymology , Inflammation/genetics , Inflammation/metabolism , Kynurenine/metabolism , Lipopolysaccharides/pharmacology , Mice , Phosphorylation , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Tryptophan Oxygenase/metabolism , src-Family Kinases/metabolism
11.
J Cell Mol Med ; 23(5): 3757-3761, 2019 05.
Article in English | MEDLINE | ID: mdl-30793469

ABSTRACT

The cytokine interleukin IL-35 is known to exert strong immunosuppressive functions. Indoleamine 2,3-dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL-35 and the activity of those enzymes. We transfected a single chain IL-35Ig gene construct in murine splenic DCs (DC35 ) and assessed any IDO1 and Arg1 activities as resulting from ectopic IL-35Ig expression, both in vitro and in vivo. Unlike Ido1, Arg1 expression was induced in vitro in DC35 , and it conferred an immunosuppressive phenotype on those cells, as revealed by a delayed-type hypersensitivity assay. Moreover, the in vivo onset of a tolerogenic phenotype in DC35 was associated with the detection of CD25+ CD39+ , rather than Foxp3+ , regulatory T cells. Therefore, Arg1, but not Ido1, expression in DC35 appears to be an early event in IL-35Ig-mediated immunosuppression.


Subject(s)
Arginase/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Interleukins/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Arginase/genetics , Arginase/metabolism , Dendritic Cells/metabolism , Female , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Immune Tolerance/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Interleukins/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism
12.
Molecules ; 24(3)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30754712

ABSTRACT

The aqueous extract of dry onion skin waste from the 'Dorata di Parma' cultivar was tested as a new source of biomolecules for the production of colored and biofunctional wool yarns, through environmentally friendly dyeing procedures. Specific attention was paid to the antioxidant and UV protection properties of the resulting textiles. On the basis of spectrophotometric and mass spectrometry analyses, the obtained deep red-brown color was assigned to quercetin and its glycoside derivatives. The Folin⁻Ciocalteu method revealed good phenol uptakes on the wool fiber (higher than 27% for the textile after the first dyeing cycle), with respect to the original total content estimated in the water extract (78.50 ± 2.49 mg equivalent gallic acid/g onion skin). The manufactured materials showed remarkable antioxidant activity and ability to protect human skin against lipid peroxidation following UV radiation: 7.65 ± 1.43 (FRAP assay) and 13.60 (ORAC assay) mg equivalent trolox/g textile; lipid peroxidation inhibition up to 89.37%. This photoprotective and antioxidant activity were therefore ascribed to the polyphenol pool contained in the outer dried gold skins of onion. It is worth noting that citofluorimetric analysis demonstrated that the aqueous extract does not have a significative influence on cell viability, neither is capable of inducing a proapoptotic effect.


Subject(s)
Antioxidants/pharmacology , Onions/chemistry , Polyphenols/pharmacology , Radiation-Protective Agents/pharmacology , Skin/drug effects , Wool Fiber/analysis , Animals , Antioxidants/chemistry , Cell Survival , Gallic Acid , Glycosides/chemistry , Glycosides/pharmacology , Humans , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Mass Spectrometry , Mice , Plant Extracts/chemistry , Polyphenols/chemistry , Quercetin/analogs & derivatives , Quercetin/chemistry , RAW 264.7 Cells , Radiation-Protective Agents/chemistry , Skin/radiation effects , Spectrophotometry , Textile Industry
14.
J Cell Mol Med ; 21(1): 165-176, 2017 01.
Article in English | MEDLINE | ID: mdl-27696702

ABSTRACT

The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the initial, rate-limiting step in tryptophan (Trp) degradation, resulting in tryptophan starvation and the production of immunoregulatory kynurenines. IDO1's catalytic function has long been considered as the one mechanism responsible for IDO1-dependent immune suppression by dendritic cells (DCs), which are master regulators of the balance between immunity and tolerance. However, IDO1 also harbours immunoreceptor tyrosine-based inhibitory motifs, (ITIM1 and ITIM2), that, once phosphorylated, bind protein tyrosine phosphatases, (SHP-1 and SHP-2), and thus trigger an immunoregulatory signalling in DCs. This mechanism leads to sustained IDO1 expression, in a feedforward loop, which is particularly important in restraining autoimmunity and chronic inflammation. Yet, under specific conditions requiring that early and protective inflammation be unrelieved, tyrosine-phosphorylated ITIMs will instead bind the suppressor of cytokine signalling 3 (SOCS3), which drives IDO1 proteasomal degradation and shortens the enzyme half-life. To dissect any differential roles of the two IDO1's ITIMs, we generated protein mutants by replacing one or both ITIM-associated tyrosines with phospho-mimicking glutamic acid residues. Although all mutants lost their enzymic activity, the ITIM1 - but not ITIM2 mutant - did bind SHPs and conferred immunosuppressive effects on DCs, making cells capable of restraining an antigen-specific response in vivo. Conversely, the ITIM2 mutant would preferentially bind SOCS3, and IDO1's degradation was accelerated. Thus, it is the selective phosphorylation of either ITIM that controls the duration of IDO1 expression and function, in that it dictates whether enhanced tolerogenic signalling or shutdown of IDO1-dependent events will occur in a local microenvironment.


Subject(s)
Immunosuppressive Agents/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Tyrosine/immunology , Animals , Cytokines/immunology , Dendritic Cells/immunology , Female , Half-Life , Immune Tolerance/immunology , Kynurenine/immunology , Mice , Mice, Inbred C57BL , Phosphorylation/immunology , Protein Domains/immunology , Signal Transduction/immunology , Suppressor of Cytokine Signaling Proteins/immunology , Tryptophan/immunology
15.
Mediators Inflamm ; 2017: 1380615, 2017.
Article in English | MEDLINE | ID: mdl-28356656

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS), and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4+ T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs), typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs). In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A), known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63 ± 1.86 versus 23.49 ± 1.46, resp.; p = 0.001). Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of splenic regulatory (Foxp3+ CD4+) T cells. CpG-A likewise reduced the levels of IL-17 and IFN-γ in the CNS. Mechanistic insight into those events showed that CpG-A promoted a regulatory phenotype in pDCs. Moreover, adoptive transfer of pDCs isolated from CpG-A-treated mice inhibited CNS inflammation and induced disease remission in acute-phase EAE. Our data thus identify a link between TLR9 activation by specific ligands and the induction of tolerance via innate immunity mechanisms.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunity, Innate , Oligodeoxyribonucleotides/metabolism , Animals , Dendritic Cells/cytology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Endotoxins/metabolism , Female , Inflammation , Ligands , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Phenotype , Signal Transduction , Spleen/metabolism , T-Lymphocytes, Regulatory/cytology
16.
Cytokine ; 75(2): 380-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26003759

ABSTRACT

Dendritic cells (DCs) are professional antigen presenting cells capable of orchestrating either stimulatory or regulatory immune responses mediated by T cells. Interleukin 35 (IL-35) is an immunosuppressive, heterodimeric cytokine belonging to the IL-12 family and known to be produced by regulatory T cells but not DCs. In this study, we explored the possible immunosuppressive effect of IL-35 ectopically expressed by splenic DCs from nonobese diabetic (NOD) mice, a prototypical model of autoimmune diabetes. After pulsing with the IGRP peptide (a dominant, diabetogenic autoantigen in NOD mice) and transfer in vivo, IL-35Ig- but not Ig-transfected DCs suppressed antigen specific, T cell-mediated responses in a skin test assay. More importantly, transfer of IL-35Ig-transfected, IGRP-pulsed DCs into prediabetic NOD mice induced a delayed and less severe form of diabetes, an effect accompanied by the increase of CD4(+)CD39(+) suppressive T cells in pancreatic lymph nodes. Our data therefore suggest that DCs overexpressing ectopic IL-35Ig might represent a powerful tool in negative vaccination strategies.


Subject(s)
Antibodies/genetics , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/prevention & control , Interleukins/genetics , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Animals , Antibodies/immunology , Base Sequence , CD4-Positive T-Lymphocytes/immunology , Cell Line , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Female , Genetic Therapy/methods , HEK293 Cells , Humans , Interleukins/biosynthesis , Interleukins/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Molecular Sequence Data , Pancreas/cytology , Pancreas/immunology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/immunology
17.
J Cell Mol Med ; 18(10): 2082-91, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25215657

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal-transducing molecule, independently of its enzymic function. IDO1 signalling activity is triggered in plasmacytoid dendritic cells (pDCs) by transforming growth factor-ß (TGF-ß), an event that requires the non-canonical NF-κB pathway and induces long-lasting IDO1 expression and autocrine TGF-ß production in a positive feedback loop, thus sustaining a stably regulatory phenotype in pDCs. IDO1 expression and catalytic function are defective in pDCs from non-obese diabetic (NOD) mice, a prototypic model of autoimmune diabetes. In the present study, we found that TGF-ß failed to activate IDO1 signalling function as well as up-regulate IDO1 expression in NOD pDCs. Moreover, TGF-ß-treated pDCs failed to exert immunosuppressive properties in vivo. Nevertheless, transfection of NOD pDCs with Ido1 prior to TGF-ß treatment resulted in activation of the Ido1 promoter and induction of non-canonical NF-κB and TGF-ß, as well as decreased production of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α). Overexpression of IDO1 in TGF-ß-treated NOD pDCs also resulted in pDC ability to suppress the in vivo presentation of a pancreatic ß-cell auto-antigen. Thus, our data suggest that a correction of IDO1 expression may restore its dual function and thus represent a proper therapeutic manoeuvre in this autoimmune setting.


Subject(s)
Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Immunity, Cellular/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Skin/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Blotting, Western , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Skin/cytology , Skin/metabolism
18.
J Immunol ; 189(5): 2283-9, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22844124

ABSTRACT

Short synthetic oligodeoxynucleotides (ODNs) rich in CpG or GpG motifs have been considered as potential modulators of immunity in clinical settings. In this study, we show that a synthetic GpC-ODN conferred highly suppressive activity on mouse splenic plasmacytoid dendritic cells, demonstrable in vivo in a skin test assay. The underlying mechanism involved signaling by noncanonical NF-κB family members and TGF-ß-dependent expression of the immunoregulatory enzyme IDO. Unlike CpG-ODNs, the effects of GpC-ODN required TLR7/TRIF-mediated but not TLR9/MyD88-mediated events, as do sensing of viral ssRNA and the drug imiquimod. Induction of IDO by a GpC-containing ODN could also be demonstrated in human dendritic cells, allowing those cells to assist FOXP3+ T cell generation in vitro. Among potentially therapeutic ODNs, this study identifies GpC-rich sequences as novel activators of TLR7-mediated, IDO-dependent regulatory responses.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance/genetics , Oligodeoxyribonucleotides/pharmacology , Animals , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/enzymology , Female , Humans , Immune Tolerance/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Interferon-beta/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , Oligodeoxyribonucleotides/genetics , Protein Structure, Tertiary , Receptors, Interleukin-1/physiology , Signal Transduction/immunology , Toll-Like Receptor 7/physiology , Transcription, Genetic/immunology , Transforming Growth Factor beta/physiology
19.
Nat Med ; 13(5): 579-86, 2007 May.
Article in English | MEDLINE | ID: mdl-17417651

ABSTRACT

Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, GITRL, on accessory cells contribute to the control of immune homeostasis. Here we show that reverse signaling through GITRL after engagement by soluble GITR initiates the immunoregulatory pathway of tryptophan catabolism in mouse plasmacytoid dendritic cells, by means of noncanonical NF-kappaB-dependent induction of indoleamine 2,3-dioxygenase (IDO). The synthetic glucocorticoid dexamethasone administered in vivo activated IDO through the symmetric induction of GITR in CD4(+) T cells and GITRL in plasmacytoid dendritic cells. The drug exerted IDO-dependent protection in a model of allergic airway inflammation. Modulation of tryptophan catabolism via the GITR-GITRL coreceptor system might represent an effective therapeutic target in immune regulation. Induction of IDO could be an important mechanism underlying the anti-inflammatory action of corticosteroids.


Subject(s)
Dexamethasone/pharmacology , Hypersensitivity/prevention & control , Hypersensitivity/physiopathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Receptors, Nerve Growth Factor/physiology , Receptors, Tumor Necrosis Factor/physiology , Signal Transduction/physiology , Animals , Dendritic Cells/immunology , Disease Models, Animal , Enzyme Activation/drug effects , Glucocorticoid-Induced TNFR-Related Protein , Humans , Mice , Receptors, Nerve Growth Factor/drug effects , Receptors, Tumor Necrosis Factor/drug effects , Spleen/immunology , Tumor Necrosis Factors/physiology
20.
Front Immunol ; 15: 1346686, 2024.
Article in English | MEDLINE | ID: mdl-38333210

ABSTRACT

The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.


Subject(s)
Ovarian Neoplasms , Oximes , Tryptophan , Female , Humans , Animals , Mice , Tryptophan/metabolism , Ovarian Neoplasms/drug therapy , Kynurenine/metabolism , Sulfonamides , Enzyme Inhibitors/pharmacology , Carcinogenesis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL