Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Dokl Biochem Biophys ; 514(1): 1-5, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38112968

ABSTRACT

We studied the influence of heterologous signal peptides in the ß-chains of glycoprotein hormones on the biosynthesis of these hormones in a transiently transfected culture of Chinese hamster ovary cells CHO S. When the natural signal peptides of the ß-chains were replaced with the heterologous signal peptide of human serum albumin, cell productivity was increased 2-2.5 times for human luteinizing hormone, human chorionic gonadotropin, and human thyroid-stimulating hormone, but not for human follicle-stimulating hormone. No significant increase in cell productivity was observed for human azurocidin signal peptide and human glycoprotein hormone α-chain signal peptide. The used approach allows quick assessing the effect of heterologous signal peptides on the biosynthesis of heterodimeric proteins of various classes.


Subject(s)
Glycoproteins , Protein Sorting Signals , Cricetinae , Animals , Humans , Cricetulus , CHO Cells , Chorionic Gonadotropin/metabolism
2.
Dokl Biochem Biophys ; 502(1): 40-44, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35275305

ABSTRACT

The Chinese hamster ovary cell line CHO is widely used for biopharmaceutical production. Genome editing makes it possible to improve the growth properties of cells, their auxotrophy, and the functioning of the apoptosis and autophagy induction systems. Simultaneous editing of multiple genes makes it possible to obtain a cell line with the required genotype faster than several consecutive rounds of genomic knockout, but the probability of success is lower. Simultaneous editing of the dhfr, glul, bak1, and bax genes in the CHO S cells genome yielded 24 clones with signs of auxotrophy for thymidine and glutamine. Five of them turned out to be dhfr+/-, all five contained a knockout of one or two glul alleles. In one clone, 7 out of 8 target alleles were inactivated by a frameshift, and the second dhfr allele was partially inactivated by insertion of the GAA triplet, which reduced the enzyme activity 2.5 times. The probability of simultaneous knockout of both dhfr alleles increased to 50% when the genome was edited with a pair of guide RNAs directed to one exon of the dhfr gene.


Subject(s)
Gene Editing , Glutamate Plasma Membrane Transport Proteins , Tetrahydrofolate Dehydrogenase , bcl-2 Homologous Antagonist-Killer Protein , bcl-2-Associated X Protein , Animals , CHO Cells , Cricetinae , Cricetulus , Gene Knockout Techniques , Glutamate Plasma Membrane Transport Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
3.
Mol Biol (Mosk) ; 51(6): 958-968, 2017.
Article in Russian | MEDLINE | ID: mdl-29271960

ABSTRACT

Catalytic antibodies are a promising model for creating highly specific biocatalysts with predetermined activity. However, in order to realize the directed change or improve their properties, it is necessary to understand the basics of catalysis and the specificity of interactions with substrates. In the present work, a structural and functional study of the Fab fragment of antibody A5 and a comparative analysis of its properties with antibody A17 have been carried out. These antibodies were previously selected for their ability to interact with organophosphorus compounds via covalent catalysis. It has been established that antibody A5 has exceptional specificity for phosphonate X with bimolecular reaction rate constants of 510 ± 20 and 390 ± 20 min^(-1)М^(-1) for kappa and lambda variants, respectively. 3D-Modeling of antibody A5 structure made it possible to establish that the reaction residue L-Y33 is located on the surface of the active site, in contrast to the A17 antibody, in which the reaction residue L-Y37 is located at the bottom of a deep hydrophobic pocket. To investigate a detailed mechanism of the reaction, A5 antibody mutants with replacements L-R51W and H-F100W were created, which made it possible to perform stopped-flow kinetics. Tryptophan mutants were obtained as Fab fragments in the expression system of the methylotrophic yeast species Pichia pastoris. It has been established that the effectiveness of their interaction with phosphonate X is comparable to the wild-type antibody. Using the data of the stopped-flow kinetics method, significant conformational changes were established in the phosphonate modification process. The reaction was found to proceed using the induced-fit mechanism; the kinetic parameters of the elementary stages of the process have been calculated. The results present the prospects for the further improvement of antibody-based biocatalysts.


Subject(s)
Antibodies, Catalytic/metabolism , Immunoglobulin Fab Fragments/metabolism , Organophosphorus Compounds/metabolism , Amino Acid Sequence , Antibodies, Catalytic/chemistry , Antibodies, Catalytic/genetics , Antibody Affinity , Antibody Specificity , Biocatalysis , Catalytic Domain , Cloning, Molecular , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Kinetics , Models, Molecular , Organophosphorus Compounds/antagonists & inhibitors , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/immunology , Pichia/genetics , Pichia/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
4.
Bull Exp Biol Med ; 163(2): 245-249, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28726207

ABSTRACT

Plasmid vector family p1.1 based on non-coding regions of Chinese hamster housekeeping gene EEF1A and concatemer of Epstein-Barr virus terminal repeat increases the frequency of genome integration and provides rapid amplification of the target genes in the genome. For a pair of fluorescent proteins eGFP and mCherry it was shown that p1.1 vectors bearing dihydrofolate reductase and glutamine synthetase selection markers upon co-transfection into CHO DG44 cell line allow obtaining a polyclonal cell population in which ~70% of cells express both genes. The subsequent one-step gene amplification of the genome-integrated genetic cassettes under the selective pressure of increased concentrations of methotrexate can increase the expression of both integrated genes up to 8.2% eGFP and 9.9% mCherry of total protein. This approach can be used for the development of cell lines for the production of functional heterodimeric proteins, e.g. polypeptide hormones and therapeutic antibodies.


Subject(s)
Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Plasmids/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Gene Amplification/genetics , Gene Amplification/physiology , Methotrexate/pharmacology
5.
Acta Naturae ; 13(1): 102-115, 2021.
Article in English | MEDLINE | ID: mdl-33959390

ABSTRACT

The coronavirus disease outbreak in 2019 (COVID-19) has now achieved the level of a global pandemic and affected more than 100 million people on all five continents and caused over 2 million deaths. Russia is, needless to say, among the countries affected by SARS-CoV-2, and its health authorities have mobilized significant efforts and resources to fight the disease. The paper presents the result of a functional analysis of 155 patients in the Moscow Region who were examined at the Central Clinical Hospital of the Russian Academy of Sciences during the first wave of the pandemic (February-July, 2020). The inclusion criteria were a positive PCR test and typical, computed tomographic findings of viral pneumonia in the form of ground-glass opacities. A clinical correlation analysis was performed in four groups of patients: (1) those who were not on mechanical ventilation, (2) those who were on mechanical ventilation, and (3) those who subsequently recovered or (4) died. The correlation analysis also considered confounding comorbidities (diabetes, metabolic syndrome, hypertension, etc.). The immunological status of the patients was examined (levels of immunoglobulins of the M, A, G classes and their subclasses, as well as the total immunoglobulin level) using an original SARS-CoV-2 antibody ELISA kit. The ELISA kit was developed using linear S-protein RBD-SD1 and NTD fragments, as well as the N-protein, as antigens. These antigens were produced in the prokaryotic E. coli system. Recombinant RBD produced in the eukaryotic CHO system (RBD CHO) was used as an antigen representing conformational RBD epitopes. The immunoglobulin A level was found to be the earliest serological criterion for the development of a SARS-CoV-2 infection and it yielded the best sensitivity and diagnostic significance of ELISA compared to that of class M immunoglobulin. We demonstrated that the seroconversion rate of "early" N-protein-specific IgM and IgA antibodies is comparable to that of antibodies specific to RBD conformational epitopes. At the same time, seroconversion of SARS-CoV-2 N-protein-specific class G immunoglobulins was significantly faster compared to that of other specific antibodies. Our findings suggest that the strong immunogenicity of the RBD fragment is for the most part associated with its conformational epitopes, while the linear RBD and NTD epitopes have the least immunogenicity. An analysis of the occurrence rate of SARS-CoV-2-specific immunoglobulins of different classes revealed that RBD- and N-specific antibodies should be evaluated in parallel to improve the sensitivity of ELISA. An analysis of the immunoglobulin subclass distribution in sera of seropositive patients revealed uniform induction of N-protein-specific IgG subclasses G1-G4 and IgA subclasses A1-A2 in groups of patients with varying severity of COVID-19. In the case of the S-protein, G1, G3, and A1 were the main subclasses of antibodies involved in the immune response.

6.
Acta Naturae ; 10(1): 51-65, 2018.
Article in English | MEDLINE | ID: mdl-29713519

ABSTRACT

Hemophilia B patients suffer from an inherited blood-clotting defect and require regular administration of blood-clotting factor IX replacement therapy. Recombinant human factor IX produced in cultured CHO cells is nearly identical to natural, plasma-derived factor IX and is widely used in clinical practice. Development of a biosimilar recombinant human factor IX for medical applications requires the generation of a clonal cell line with the highest specific productivity possible and a high level of specific procoagulant activity of the secreted factor IX. We previously developed plasmid vectors, p1.1 and p1.2, based on the untranslated regions of the translation elongation factor 1 alpha gene from Chinese hamster. These vectors allow one to perform the methotrexate- driven amplification of the genome-integrated target genes and co-transfect auxiliary genes linked to various resistance markers. The natural open reading frame region of the factor IX gene was cloned in the p1.1 vector plasmid and transfected to CHO DG44 cells. Three consecutive amplification rounds and subsequent cell cloning yielded a producer cell line with a specific productivity of 10.7 ± 0.4 pg/cell/day. The procoagulant activity of the secreted factor IX was restored nearly completely by co-transfection of the producer cells by p1.2 plasmids bearing genes of the soluble truncated variant of human PACE/furin signal protease and vitamin K oxidoreductase from Chinese hamster. The resulting clonal cell line 3B12-86 was able to secrete factor IX in a protein-free medium up to a 6 IU/ml titer under plain batch culturing conditions. The copy number of the genome- integrated factor IX gene for the 3B12-86 cell line was only 20 copies/genome; the copy numbers of the genome-integrated genes of PACE/furin and vitamin K oxidoreductase were 3 and 2 copies/genome, respectively. Factor IX protein secreted by the 3B12-86 cell line was purified by three consecutive chromatography rounds to a specific activity of up to 230 IU/mg, with the overall yield > 30%. The developed clonal producer cell line and the purification process employed in this work allow for economically sound industrial-scale production of biosimilar factor IX for hemophilia B therapy.

7.
Acta Naturae ; 5(2): 19-39, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23819034

ABSTRACT

Recombinant blood clotting factor VIII is one of the most complex proteins for industrial manufacturing due to the low efficiency of its gene transcription, massive intracellular loss of its proprotein during post-translational processing, and the instability of the secreted protein. Improvement in hemophilia A therapy requires a steady increase in the production of factor VIII drugs despite tightening standards of product quality and viral safety. More efficient systems for heterologous expression of factor VIII can be created on the basis of the discovered properties of its gene transcription, post-translational processing, and behavior in the bloodstream. The present review describes the deletion variants of factor VIII protein with increased secretion efficiency and the prospects for the pharmaceutical development of longer acting variants and derivatives of factor VIII.

8.
Acta Naturae ; 4(2): 62-73, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22872812

ABSTRACT

Factor IX is a zymogen enzyme of the blood coagulation cascade. Inherited absence or deficit of the IX functional factor causes bleeding disorder hemophilia B, which requires constant protein replacement therapy. Reviewed herein are the current state in the manufacturing of FIX, improved variants of the recombinant protein for therapy, transgenic organisms for obtaining FIX, and the advances in the gene therapy of hemophilia B.

9.
Acta Naturae ; 4(1): 93-100, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22708069

ABSTRACT

Prophylaxis and treatment of inherited clotting disorder hemophilia A requires regular administration of factor VIII. Recombinant factor VIII, which is produced in CHO or BHK cells, is equivalent to the plasma-derived one and is prevalent in current clinical practice in developed countries. Development of a biosimilar recombinant FVIII requires the creation of a highly productive clonal cell line and generation of monoclonal antibodies suitable for affinity purification of the product. Methotrexate-driven transgene amplification of genetic cassettes that code full-length and truncated variants of FVIII under the control of the CMV promoter was studied. It was shown that the expression level of the truncated variant of FVIII is 6.5 times higher than that of the full-length molecule. The transgene amplification procedure was sufficient for a twofold increase of the expression level in the transfected cells pool and subsequent selection of the clonal line, stably producing truncated FVIII at the level of 0.52 IU/ml during cultivation in a chemically defined protein-free culture medium. Four generated mouse monoclonal antibodies toward the heavy chain of FVIII were found suitable for binding the truncated variant of FVIII directly from the conditioned medium and elution of the FVIII with a more than 85% yield and normal pro-coagulant activity. The producer cell line and monoclonal antibodies obtained are sufficient for the development of upstream and downstream processes of biosimilar FVIII production. Generation of more productive cell lines by the use of stronger, nonviral promoters and shorter cDNA of FVIII will be the subject of further studies.

10.
Biochemistry (Mosc) ; 67(10): 1168-79, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12460115

ABSTRACT

Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.


Subject(s)
Antibodies, Catalytic/metabolism , Endopeptidases/metabolism , Animals , Antibodies, Anti-Idiotypic/blood , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/isolation & purification , Antibodies, Anti-Idiotypic/metabolism , Antibodies, Catalytic/blood , Antibodies, Catalytic/immunology , Antibodies, Catalytic/isolation & purification , Autoimmune Diseases/immunology , Blotting, Western , Catalysis , Endopeptidases/blood , Endopeptidases/immunology , Endopeptidases/isolation & purification , Enzyme Induction , Enzyme-Linked Immunosorbent Assay , Escherichia , Immunization , Kinetics , Mice , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL