Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Immunol ; 23(1): 75-85, 2022 01.
Article in English | MEDLINE | ID: mdl-34937930

ABSTRACT

We report a pleiotropic disease due to loss-of-function mutations in RHBDF2, the gene encoding iRHOM2, in two kindreds with recurrent infections in different organs. One patient had recurrent pneumonia but no colon involvement, another had recurrent infectious hemorrhagic colitis but no lung involvement and the other two experienced recurrent respiratory infections. Loss of iRHOM2, a rhomboid superfamily member that regulates the ADAM17 metalloproteinase, caused defective ADAM17-dependent cleavage and release of cytokines, including tumor-necrosis factor and amphiregulin. To understand the diverse clinical phenotypes, we challenged Rhbdf2-/- mice with Pseudomonas aeruginosa by nasal gavage and observed more severe pneumonia, whereas infection with Citrobacter rodentium caused worse inflammatory colitis than in wild-type mice. The fecal microbiota in the colitis patient had characteristic oral species that can predispose to colitis. Thus, a human immunodeficiency arising from iRHOM2 deficiency causes divergent disease phenotypes that can involve the local microbial environment.


Subject(s)
ADAM17 Protein/genetics , Carrier Proteins/genetics , Primary Immunodeficiency Diseases/genetics , A549 Cells , Animals , Child , Child, Preschool , Citrobacter rodentium/pathogenicity , Colitis/genetics , Cytokines/genetics , Enterobacteriaceae Infections/genetics , Female , HEK293 Cells , Humans , Infant, Newborn , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/pathogenicity , Signal Transduction/genetics
2.
Nat Immunol ; 22(2): 128-139, 2021 02.
Article in English | MEDLINE | ID: mdl-33398182

ABSTRACT

Complement hyperactivation, angiopathic thrombosis and protein-losing enteropathy (CHAPLE disease) is a lethal disease caused by genetic loss of the complement regulatory protein CD55, leading to overactivation of complement and innate immunity together with immunodeficiency due to immunoglobulin wasting in the intestine. We report in vivo human data accumulated using the complement C5 inhibitor eculizumab for the medical treatment of patients with CHAPLE disease. We observed cessation of gastrointestinal pathology together with restoration of normal immunity and metabolism. We found that patients rapidly renormalized immunoglobulin concentrations and other serum proteins as revealed by aptamer profiling, re-established a healthy gut microbiome, discontinued immunoglobulin replacement and other treatments and exhibited catch-up growth. Thus, we show that blockade of C5 by eculizumab effectively re-establishes regulation of the innate immune complement system to substantially reduce the pathophysiological manifestations of CD55 deficiency in humans.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Complement Activation/drug effects , Complement C5/antagonists & inhibitors , Complement Inactivating Agents/therapeutic use , Energy Metabolism/drug effects , Hypoproteinemia/drug therapy , Immunity, Innate/drug effects , Protein-Losing Enteropathies/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Biomarkers/blood , CD55 Antigens/deficiency , CD55 Antigens/genetics , Complement C5/metabolism , Complement Inactivating Agents/adverse effects , Complement Inactivating Agents/pharmacokinetics , Genetic Predisposition to Disease , Humans , Hypoproteinemia/genetics , Hypoproteinemia/immunology , Hypoproteinemia/metabolism , Mutation , Phenotype , Protein-Losing Enteropathies/genetics , Protein-Losing Enteropathies/immunology , Protein-Losing Enteropathies/metabolism , Treatment Outcome
3.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29358051

ABSTRACT

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Subject(s)
Adaptive Immunity , Bacteria/immunology , Histocompatibility Antigens Class I/immunology , Microbiota/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Gene Expression Regulation/immunology , Histocompatibility Antigens Class I/genetics , Mice , Mice, Transgenic
4.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Article in English | MEDLINE | ID: mdl-30127432

ABSTRACT

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Subject(s)
B-Lymphocytes/physiology , Gastrointestinal Microbiome/immunology , Germinal Center/physiology , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , T-Lymphocytes, Helper-Inducer/physiology , Animals , Autoantibodies/blood , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/genetics , Disease Models, Animal , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Immunity, Humoral/genetics , Immunoglobulin Class Switching/genetics , Immunologic Deficiency Syndromes/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
Immunity ; 46(1): 1-3, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28099858

ABSTRACT

Understanding the factors that promote or prevent HIV transmission remains a critical component of the global battle against HIV/AIDS. Gosmann et al. (2017) reveal a putative role for the vaginal microbiome in modulating heterosexual transmission of HIV, uncovering a potential strategy for protecting women from acquisition of the virus.


Subject(s)
HIV Infections/prevention & control , Mucous Membrane , Female , Humans , Vagina
6.
Nature ; 587(7834): 448-454, 2020 11.
Article in English | MEDLINE | ID: mdl-33149306

ABSTRACT

Low concordance between studies that examine the role of microbiota in human diseases is a pervasive challenge that limits the capacity to identify causal relationships between host-associated microorganisms and pathology. The risk of obtaining false positives is exacerbated by wide interindividual heterogeneity in microbiota composition1, probably due to population-wide differences in human lifestyle and physiological variables2 that exert differential effects on the microbiota. Here we infer the greatest, generalized sources of heterogeneity in human gut microbiota profiles and also identify human lifestyle and physiological characteristics that, if not evenly matched between cases and controls, confound microbiota analyses to produce spurious microbial associations with human diseases. We identify alcohol consumption frequency and bowel movement quality as unexpectedly strong sources of gut microbiota variance that differ in distribution between healthy participants and participants with a disease and that can confound study designs. We demonstrate that for numerous prevalent, high-burden human diseases, matching cases and controls for confounding variables reduces observed differences in the microbiota and the incidence of spurious associations. On this basis, we present a list of host variables that we recommend should be captured in human microbiota studies for the purpose of matching comparison groups, which we anticipate will increase robustness and reproducibility in resolving the members of the gut microbiota that are truly associated with human disease.


Subject(s)
Confounding Factors, Epidemiologic , Data Analysis , Diet , Disease , Gastrointestinal Microbiome/physiology , Life Style , Machine Learning , Adult , Aged , Aged, 80 and over , Alcohol Drinking , Area Under Curve , Body Mass Index , Case-Control Studies , Diabetes Mellitus, Type 2 , Feces/microbiology , Female , Gastrointestinal Motility , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , ROC Curve , Residence Characteristics , Young Adult
7.
Am J Respir Cell Mol Biol ; 67(2): 155-163, 2022 08.
Article in English | MEDLINE | ID: mdl-35914321

ABSTRACT

This report presents the proceedings from a workshop titled "Microbiome, Metabolism and Immunoregulation of Asthma" that was held virtually May 13 and 14, 2021. The workshop was jointly sponsored by the American Thoracic Society (Assembly on Allergy, Immunology, and Inflammation) and the National Institute of Allergy and Infectious Diseases. It convened an interdisciplinary group of experts with backgrounds in asthma immunology, microbiome science, metabolomics, computational biology, and translational pulmonary research. The main purpose was to identify key scientific gaps and needs to further advance research on microbial and metabolic mechanisms that may contribute to variable immune responses and disease heterogeneity in asthma. Discussions were structured around several topics, including 1) immune and microbial mechanisms of asthma pathogenesis in murine models, 2) the role of microbes in pediatric asthma exacerbations, 3) dysregulated metabolic pathways in asthma associated with obesity, 4) metabolism effects on macrophage function in adipose tissue and the lungs, 5) computational approaches to dissect microbiome-metabolite links, and 6) potential confounders of microbiome-disease associations in human studies. This report summarizes the major points of discussion, which included identification of specific knowledge gaps, challenges, and suggested directions for future research. These include questions surrounding mechanisms by which microbiota and metabolites shape host health versus an allergic or asthmatic state; direct and indirect influences of other biological factors, exposures, and comorbidities on these interactions; and ongoing technical and analytical gaps for clinical translation.


Subject(s)
Asthma , Hypersensitivity , Microbiota , Animals , Asthma/etiology , Child , Humans , Hypersensitivity/complications , Immunity , Mice , National Institute of Allergy and Infectious Diseases (U.S.) , United States
8.
Proc Natl Acad Sci U S A ; 116(47): 23643-23652, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31672911

ABSTRACT

The cross-talk between the microbiota and the immune system plays a fundamental role in the control of host physiology. However, the tissue-specific factors controlling this dialogue remain poorly understood. Here we demonstrate that T cell responses to commensal colonization are associated with the development of organized cellular clusters within the skin epithelium. These organized lymphocyte clusters are surrounded by keratinocytes expressing a discrete program associated with antigen presentation and antimicrobial defense. Notably, IL-22-mediated keratinocyte-intrinsic MHC class II expression was required for the selective accumulation of commensal-induced IFN-γ, but not IL-17A-producing CD4+ T cells within the skin. Taking these data together, this work uncovers an unexpected role for MHC class II expression by keratinocytes in the control of homeostatic type 1 responses to the microbiota. Our findings have important implications for the understanding of the tissue-specific rules governing the dialogue between a host and its microbiota.


Subject(s)
Epidermis/microbiology , Histocompatibility Antigens Class II/biosynthesis , Host Microbial Interactions/immunology , Keratinocytes/immunology , Microbiota/immunology , Th1 Cells/immunology , Animals , Antigen Presentation , Candida albicans/immunology , Epidermis/immunology , Genes, MHC Class II , Interferon-gamma/biosynthesis , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Organ Specificity , Radiation Chimera , Specific Pathogen-Free Organisms , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Symbiosis , Th1 Cells/metabolism
9.
J Infect Dis ; 224(8): 1405-1409, 2021 10 28.
Article in English | MEDLINE | ID: mdl-33606018

ABSTRACT

Unbiased plasma proteomics in a matched case-control study of treated people with human immunodeficiency virus (PWH) revealed the complement cascade as being among the top pathways enriched in PWH. Specific complement components, namely C5, associated significantly with non-AIDS comorbidity prevalence, and did so more strongly than previously established predictive biomarkers.


Subject(s)
Complement C5/analysis , HIV Infections/epidemiology , Aging , Biomarkers/blood , Case-Control Studies , Comorbidity , HIV , HIV Seronegativity , Humans , Immunologic Factors
10.
BMC Bioinformatics ; 21(1): 378, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883210

ABSTRACT

BACKGROUND: The improvements in genomics methods coupled with readily accessible high-throughput sequencing have contributed to our understanding of microbial species, metagenomes, infectious diseases and more. To maximize the impact of these genomics studies, it is important that data from biological samples will become publicly available with standardized metadata. The availability of data at public archives provides the hope that greater insights could be obtained through integration with multi-omics data, reproducibility of published studies, or meta-analyses of large diverse datasets. These datasets should include a description of the host, organism, environmental source of the specimen, spatial-temporal information and other relevant metadata, but unfortunately these attributes are often missing and when present, they show inconsistencies in the use of metadata standards and ontologies. RESULTS: METAGENOTE ( https://metagenote.niaid.nih.gov ) is a web portal that greatly facilitates the annotation of samples from genomic studies and streamlines the submission process of sequencing files and metadata to the Sequence Read Archive (SRA) (Leinonen R, et al, Nucleic Acids Res, 39:D19-21, 2011) for public access. This platform offers a wide selection of packages for different types of biological and experimental studies with a special emphasis on the standardization of metadata reporting. These packages follow the guidelines from the MIxS standards developed by the Genomics Standard Consortium (GSC) and adopted by the three partners of the International Nucleotides Sequencing Database Collaboration (INSDC) (Cochrane G, et al, Nucleic Acids Res, 44:D48-50, 2016) - National Center for Biotechnology Information (NCBI), European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). METAGENOTE then compiles, validates and manages the submission through an easy-to-use web interface minimizing submission errors and eliminating the need for submitting sequencing files via a separate file transfer mechanism. CONCLUSIONS: METAGENOTE is a public resource that focuses on simplifying the annotation and submission process of data with its corresponding metadata. Users of METAGENOTE will benefit from the easy to use annotation interface but most importantly will be encouraged to publish metadata following standards and ontologies that make the public data available for reuse.


Subject(s)
Genomics/methods , User-Computer Interface , Animals , Databases, Genetic , Humans
11.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31270225

ABSTRACT

Gastrointestinal (GI) immune system competency is dependent upon interactions with commensal microbiota, which can be influenced by wide-ranging pharmacologic interventions. In simian immunodeficiency virus (SIV)-infected Asian macaque models of human immunodeficiency virus (HIV) infection, we previously noted that initiation of antiretroviral therapy (ART) is associated with a specific imbalance (dysbiosis) of the composition of the intestinal bacteriome. To determine if ART itself might contribute to dysbiosis or immune dysfunction, we treated healthy rhesus macaques with protease, integrase, or reverse transcriptase inhibitors for 1 to 2 or for 5 to 6 weeks and evaluated intestinal immune function and the composition of the fecal bacterial microbiome. We observed that individual antiretrovirals (ARVs) modestly altered intestinal T-cell proinflammatory responses without disturbing total or activated T-cell frequencies. Moreover, we observed transient disruptions in bacterial diversity coupled with perturbations in the relative frequencies of bacterial communities. Shifts in specific bacterial frequencies were not persistent posttreatment, however, with individual taxa showing only isolated associations with T-cell proinflammatory responses. Our findings suggest that intestinal bacterial instability and modest immunological alterations can result from ART itself. These data could lead to therapeutic interventions which stabilize the microbiome in individuals prescribed ART.IMPORTANCE Dysbiosis of the fecal microbiome is a common feature observed in ARV-treated people living with HIV. The degree to which HIV infection itself causes this dysbiosis remains unclear. Here, we demonstrate that medications used to treat HIV infection can influence the composition of the GI tract immune responses and its microbiome in the nonhuman primate SIV model.


Subject(s)
Dysbiosis/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/immunology , Animals , Anti-Retroviral Agents/adverse effects , Anti-Retroviral Agents/pharmacology , Disease Models, Animal , Dysbiosis/virology , Female , Intestines/immunology , Intestines/microbiology , Lymphocyte Activation/drug effects , Macaca mulatta/metabolism , Male , Microbiota/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , T-Lymphocytes/immunology
12.
Curr HIV/AIDS Rep ; 16(3): 204-213, 2019 06.
Article in English | MEDLINE | ID: mdl-31037552

ABSTRACT

PURPOSE OF REVIEW: We discuss recent advances in understanding of gut bacterial microbiota composition in HIV-infected subjects and comment on controversies. We discuss the putative effects of microbiota shifts on systemic inflammation and HIV disease progression and potential mechanisms, as well as ongoing strategies being developed to modulate the gut microbiota in humans for amelioration of infectious and inflammatory diseases. RECENT FINDINGS: Lifestyle and behavioral factors relevant to HIV infection studies have independent effects on the microbiota. Microbial metabolism of immunomodulatory compounds and direct immune stimulation by translocation of microbes are putative mechanisms contributing to HIV disease. Fecal microbiota transplantation, microbial enzyme inhibition, phage therapy, and rationally selected probiotic cocktails have emerged as promising strategies for microbiota modulation. Numerous surveys of the HIV gut microbiota matched for lifestyle factors suggest consistent shifts in gut microbiota composition among HIV-infected subjects. Evidence exists for a complex pathogenic role of the gut microbiota in HIV disease progression, warranting further study.


Subject(s)
Bacteria/classification , Bacteria/immunology , Gastrointestinal Microbiome/immunology , HIV Infections/immunology , Disease Progression , Fecal Microbiota Transplantation , Humans , Inflammation/immunology
13.
PLoS Pathog ; 8(11): e1003000, 2012.
Article in English | MEDLINE | ID: mdl-23166490

ABSTRACT

Idiopathic chronic diarrhea (ICD) is a leading cause of morbidity amongst rhesus monkeys kept in captivity. Here, we show that exposure of affected animals to the whipworm Trichuris trichiura led to clinical improvement in fecal consistency, accompanied by weight gain, in four out of the five treated monkeys. By flow cytometry analysis of pinch biopsies collected during colonoscopies before and after treatment, we found an induction of a mucosal T(H)2 response following helminth treatment that was associated with a decrease in activated CD4(+) Ki67+ cells. In parallel, expression profiling with oligonucleotide microarrays and real-time PCR analysis revealed reductions in T(H)1-type inflammatory gene expression and increased expression of genes associated with IgE signaling, mast cell activation, eosinophil recruitment, alternative activation of macrophages, and worm expulsion. By quantifying bacterial 16S rRNA in pinch biopsies using real-time PCR analysis, we found reduced bacterial attachment to the intestinal mucosa post-treatment. Finally, deep sequencing of bacterial 16S rRNA revealed changes to the composition of microbial communities attached to the intestinal mucosa following helminth treatment. Thus, the genus Streptophyta of the phylum Cyanobacteria was vastly increased in abundance in three out of five ICD monkeys relative to healthy controls, but was reduced to control levels post-treatment; by contrast, the phylum Tenericutes was expanded post-treatment. These findings suggest that helminth treatment in primates can ameliorate colitis by restoring mucosal barrier functions and reducing overall bacterial attachment, and also by altering the communities of attached bacteria. These results also define ICD in monkeys as a tractable preclinical model for ulcerative colitis in which these effects can be further investigated.


Subject(s)
Colon/immunology , Diarrhea/immunology , Diarrhea/therapy , Diarrhea/veterinary , Intestinal Mucosa/immunology , Monkey Diseases/immunology , Monkey Diseases/therapy , Therapy with Helminths , Trichuris , Animals , Chronic Disease , Colon/microbiology , Cyanobacteria/immunology , Diarrhea/microbiology , Female , Inflammation/immunology , Inflammation/microbiology , Inflammation/therapy , Intestinal Mucosa/microbiology , Macaca mulatta , Male , Monkey Diseases/microbiology , Th1 Cells/immunology , Th2 Cells/immunology
14.
Microbiome ; 12(1): 106, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877521

ABSTRACT

BACKGROUND: Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS: PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS: Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.


Subject(s)
Cardiovascular Diseases , Comorbidity , Dysbiosis , Gastrointestinal Microbiome , HIV Infections , Humans , HIV Infections/complications , HIV Infections/microbiology , Cardiovascular Diseases/microbiology , Dysbiosis/microbiology , Fatty Acids, Volatile/metabolism , Inflammation , Risk Factors
15.
Mucosal Immunol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089468

ABSTRACT

Microbial translocation is a significant contributor to chronic inflammation in people living with HIV (PLWH) and is associated with increased mortality and morbidity in individuals treated for long periods with antiretrovirals. The use of therapeutics to treat microbial translocation has yielded mixed effects, in part, because the species and mechanisms contributing to translocation in HIV remain incompletely characterized. To characterize translocating bacteria, we cultured translocators from chronically SIV-infected rhesus macaques. Proteomic profiling of these bacteria identified cytosine-specific methyltransferases as a common feature and therefore, a potential driver of translocation. Treatment of translocating bacteria with the cytosine methyltransferase inhibitor decitabine significantly impaired growth for several species in vitro. In rhesus macaques, oral treatment with decitabine led to some transient decreases in translocator taxa in the gut microbiome. These data provide mechanistic insight into bacterial translocation in lentiviral infection and explore a novel therapeutic intervention that may improve the prognosis of PLWH.

16.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826293

ABSTRACT

Gastrointestinal (GI) B cells and plasma cells (PCs), critical to mucosal homeostasis, play an important role in the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs from colon and ileum during both viremic and suppressed HIV-1 infection identified a significant reduction in germinal center (GC) B cells and Follicular Dendritic Cells (FDCs) during HIV-1 viremia. Further, IgA + PCs, the major cellular output of intestinal GCs were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling persisted in antiretroviral therapy (ART) treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations associated with changes in intestinal microbiome composition and systemic inflammation. Herein, we highlight a key immune defect in the GI mucosa due to HIV-1 viremia, with major implications. One Sentence Summary: Major perturbations in intestinal GC dynamics in viremic HIV-1 infection relate to reduced IgA + plasma cells, systemic inflammation and microbiota changes.

17.
Cell Rep ; 42(11): 113336, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37918403

ABSTRACT

Antiretroviral therapy (ART) has dramatically lengthened lifespan among people with HIV (PWH), but this population experiences heightened rates of inflammation-related comorbidities. HIV-associated inflammation is linked with an altered microbiome; whether such alterations precede inflammation-related comorbidities or occur as their consequence remains unknown. We find that ART-treated PWH exhibit depletion of gut-resident bacteria that produce short-chain fatty acids (SCFAs)-crucial microbial metabolites with anti-inflammatory properties. Prior reports establish that fecal SCFA concentrations are not depleted in PWH. We find that gut-microbiota-mediated SCFA production capacity is better reflected in serum than in feces and that PWH exhibit reduced serum SCFA, which associates with inflammatory markers. Leveraging stool and serum samples collected prior to comorbidity onset, we find that HIV-specific microbiome alterations precede morbidity and mortality in ART-treated PWH. Among these microbiome alterations, reduced microbiome-mediated conversion of lactate to propionate precedes mortality in PWH. Thus, gut microbial fiber/lactate conversion to SCFAs may modulate HIV-associated comorbidity risk.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Humans , Fatty Acids, Volatile/metabolism , Feces/microbiology , HIV Infections/complications , Morbidity , Inflammation , Lactates
18.
Sci Transl Med ; 14(658): eabl3927, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35976997

ABSTRACT

Unique gut microbiota compositions have been associated with inflammatory diseases, but identifying gut bacterial functions linked to immune activation in humans remains challenging. Translocation of pathogens from mucosal surfaces into peripheral tissues can elicit immune activation, although whether and which gut commensal bacteria translocate in inflammatory diseases is difficult to assess. We report that a subset of commensal gut microbiota constituents that translocate across the gut barrier in mice and humans are associated with heightened systemic immunoglobulin G (IgG) responses. We present a modified high-throughput, culture-independent approach to quantify systemic IgG against gut commensal bacteria in human serum samples without the need for paired stool samples. Using this approach, we highlight several commensal bacterial species that elicit elevated IgG responses in patients with inflammatory bowel disease (IBD) including taxa within the clades Collinsella, Bifidobacterium, Lachnospiraceae, and Ruminococcaceae. These and other taxa identified as translocating bacteria or targets of systemic immunity in IBD concomitantly exhibited heightened transcriptional activity and growth rates in IBD patient gut microbiomes. Our approach represents a complementary tool to illuminate interactions between the host and its gut microbiota and may provide an additional method to identify microbes linked to inflammatory disease.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Animals , Bacteria , Gastrointestinal Microbiome/physiology , Humans , Immunoglobulin G , Inflammatory Bowel Diseases/microbiology , Mice
19.
Science ; 371(6529): 595-602, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33542131

ABSTRACT

Anti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8-expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti-PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti-PD-1 in a subset of PD-1 advanced melanoma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Drug Resistance, Neoplasm , Fecal Microbiota Transplantation , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Skin Neoplasms/therapy , CD8-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome , Humans , Interleukin-8/immunology , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid Cells/immunology , Tumor Microenvironment/immunology
20.
Infect Immun ; 78(7): 2901-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20421378

ABSTRACT

Pertactin (PRN) is an autotransporter protein produced by all members of the Bordetella bronchiseptica cluster, which includes B. pertussis, B. parapertussis, and B. bronchiseptica. It is a primary component of acellular pertussis vaccines, and anti-PRN antibody titers correlate with protection. In vitro studies have suggested that PRN functions as an adhesin and that an RGD motif located in the center of the passenger domain is important for this function. Two regions of PRN that contain sequence repeats (region 1 [R1] and R2) show polymorphisms among strains and have been implicated in vaccine-driven evolution. We investigated the role of PRN in pathogenesis using B. bronchiseptica and natural-host animal models. A Deltaprn mutant did not differ from wild-type B. bronchiseptica in its ability to adhere to epithelial and macrophage-like cells in vitro or to establish respiratory infection in rats but was cleared much faster than wild-type bacteria in a mouse lung inflammation model. Unlike wild-type B. bronchiseptica, the Deltaprn mutant was unable to cause a lethal infection in SCID-Bg mice, but, like wild-type bacteria, it was lethal for neutropenic mice. These results suggest that PRN plays a critical role in allowing Bordetella to resist neutrophil-mediated clearance. Mutants producing PRN proteins in which the RGD motif was replaced with RGE or in which R1 and R2 were deleted were indistinguishable from wild-type bacteria in all assays, suggesting that these sequences do not contribute to PRN function.


Subject(s)
Bacterial Outer Membrane Proteins/physiology , Bordetella Infections/microbiology , Bordetella/pathogenicity , Neutrophils/immunology , Animals , Bacterial Adhesion/genetics , Bacterial Adhesion/physiology , Bacterial Outer Membrane Proteins/genetics , Bordetella/genetics , Bordetella Infections/immunology , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/pathogenicity , Epithelium/microbiology , Female , Lung/immunology , Lung/microbiology , Macrophages, Alveolar/microbiology , Mice , Mice, Inbred BALB C , Mice, SCID , Neutropenia/immunology , Neutropenia/microbiology , Neutrophils/physiology , Protein Engineering , Rats , Rats, Wistar , Virulence Factors, Bordetella/genetics
SELECTION OF CITATIONS
SEARCH DETAIL