Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Dairy Sci ; 103(11): 10399-10413, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32921460

ABSTRACT

Genetic parameters for test-day milk yield, lactation persistency, and age at first calving (as a fertility trait) were estimated for the first 4 lactations in multiple-breed dairy cows in low-, medium-, and high-production systems in Kenya. Data included 223,285 test-day milk yield records from 11,450 cows calving from 1990 to 2015 in 148 herds. A multivariate random regression model was used to estimate variance and covariance components. The fixed effects in the model included herd, year, and test month, and age as a covariate. The lactation profile over days in milk (DIM) was fitted as a cubic smoothing spline. Random effects included herd, year, and test month interaction effects, genetic group effects, and additive genetic and permanent environmental effects modeled with a cubic Legendre polynomial function. The residual variance was heterogeneous with 11 classes. Consequently, the variance components were varied over the lactation and with the production system. The estimated heritability for milk yield was lower in the low-production system (0.04-0.48) than in the medium- (0.22-0.59) and high-production (0.21-0 60) systems. The genetic correlations estimated between different DIM within lactations decreased as the time interval increased, becoming negative between the ends of the lactations in the low- and medium-production systems. Low (0.05) to medium (0.60) genetic correlations were estimated among first lactation test-day milk yields across the 3 production systems. Genetic correlations between the first lactation test-day milk yield and age at first calving ranged from 0.27 to 0.49, 0 to 0.81, and -0.08 to 0.27 in the low-, medium-, and high-production systems, respectively. Medium to high heritabilities (0.17-0.44) were estimated for persistency, with moderate to high (0.30-0.87) genetic correlations between 305-d milk yield and persistency. This indicates that genetic improvement in persistency would lead to increased milk yield. The low to medium genetic correlations between test-day milk yield between production systems indicate that sires may be re-ranked between production systems. Therefore, we conclude that sires should be selected based on a genetic evaluation within the target production system.


Subject(s)
Cattle , Dairying , Fertility , Lactation , Milk , Animals , Female , Fertility/genetics , Kenya , Lactation/genetics , Phenotype , Pregnancy
2.
Animal ; 16(5): 100513, 2022 May.
Article in English | MEDLINE | ID: mdl-35436647

ABSTRACT

A deterministic bio-economic model was developed to estimate economic weights for genetic improvement of lactation milk yield, fat yield, age at first calving, calving interval, mature weight and survival under low, medium and high production systems in the Tropics. Input parameters were obtained from dairy production systems in Kenya which has a tropical environment. The highest proportion of revenue is from the sale of milk followed by sale of heifers, cull cows and sale of male calves under all production systems. On the other hand, feed cost is the most important production cost followed by labour, marketing, reproduction and health costs, respectively. Economic values for the six traits were derived from a profit equation using revenue and production costs per cow per year. The economic values were then discounted using diffusion coefficients which account for differences between traits in the time when the improvement is expressed. Economic weights were robust to changes in input and output prices, changes in feeding strategies, and changes in milk and surplus heifer marketing strategies. Genetic standard deviations were multiplied by economic values to standardise the economic value of traits and to compare their potential for economic response. When expressed as proportion of their sum, these relative economic weights under the low, medium and high production systems for lactation milk yield were 51.36, 59.79 and 63.98%; for fat yield 4.50, 10.69 and 9.05%; for age at first calving 3.16, 2.66 and 0.55%; for calving interval 33.59, 19.88 and 20.05%; for mature weight 1.55, 1.34 and 1.19% and for survival rate 5.84, 5.64 and 5.18%, respectively. The predicted responses followed the same pattern as the relative economic weights. This shows that milk yield and calving interval were most important in all production systems but the value of response for traits differed between production systems with more emphasis on milk yield and less on calving interval in the high production systems. Moderate correlations were estimated between the breeding objective for the low, medium and high production systems. To maximise response in the overall breeding objective, different selection criteria are required for the three production systems.


Subject(s)
Dairying , Lactation , Animals , Cattle/genetics , Female , Kenya , Lactation/genetics , Male , Milk , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL